Name:

Below is a toy model of IEEE double-precision floating-point format. The sequence of 8 bits

c_0	b_1	b_2	b_3	b_4	a_1	a_2	a_3
\sim						~	
sign part	exponent part				mantissa part		

represents a number $x = \sigma \cdot \bar{x} \cdot 2^e$ where σ, \bar{x}, e are determined as follows:

$$\sigma = \begin{cases} 1 & \text{if } c_0 = 0, \\ -1 & \text{if } c_0 = 1, \end{cases}$$

$$E = (b_1 b_2 b_3 b_4)_2$$

• If $1 \le E \le 14$ then

$$e = E - 7,$$

 $\bar{x} = (1.a_1a_2a_3)_2$

- If E = 0 then e = -6 and $\bar{x} = (0.a_1a_2a_3)_2$.
- If E = 15 then $x = \pm \infty$ (depending on the sign σ).
- 1) Perform the addition of floating-point numbers by following the procedure:
 - (a) Rewrite the smaller number such that its exponent matches with the exponent of the larger number.
 - (b) Add the significands.
 - (c) Normalize the result by moving the floating point.
 - (d) Round the result.

(A)
$$(1.101)_2 \times 2^2 + (1.111)_2 \times 2^2$$

See Lecture 7

(B)
$$(1.011)_2 \times 2^2 - (0.111)_2 \times 2^2$$

(C) $-(1.010)_2 \times 2^1 + (1.011)_2 \times 2^{-1}$

- 2) Perform the below floating-point multiplication by following the procedure:
 - (a) Add two exponents.
 - (b) Multiply the significands.
 - (c) Normalize the result by shifting the floating point.
 - (d) Round the significand.

 $(1.101)_2 \times 2^{-3} \times (1.111)_2 \times 2^2$

See Lecture 7

3) For each given x, find the next number (smallest number greater than x) that can be represented with exactness by the above floating-point format. Find the difference between two numbers (written as power of 2).

(a)
$$x = (0.000)_2 \times 2^{-6}$$

(b)
$$x = (0.001)_2 \times 2^{-6}$$

(c)
$$x = (1.101)_2 \times 2^{-2}$$

(d) $x = (1.010)_2 \times 2^6$