N	mo	
TNS	ame:	

1. Newton's method can be used to compute approximately $\sqrt{3}$ by the procedure:

- Find a function f such that $x_* = \sqrt{3}$ is a root.
- Write the iteration formula of Newton's method.
- Pick a point x_0 as the initial iteration. The closer x_0 is to x_* the better.
- What do you get for x_4 ?

See Lecture 10

- 2. Find approximately the intersection point of the graph of $u(x) = e^x$ and the graph of v(x) = 1/x by
 - (a) Newton's method (3 iterations).
 - (b) Bisection method (3 iterations).

$$u(x) = e^{x}$$
The intersection point solves

$$v(x) = \frac{1}{x}$$
the equation

$$e^{x} = \frac{1}{x},$$
which is equivalent to $xe^{x} = 1$.
We will find approximate root of

$$f(x) = xe^{x} - 1.$$
(a) Use Newton's method:
we have $g'(x) = xe^{x} + e^{x} = (x+1)e^{x}$
Dick $x_{0} = 1$. The iteration formula is
 $x_{n_{1}} = x_{n} - \frac{f(x_{n})}{f'(x_{n})} = x_{n} - \frac{x_{n}e^{x_{n}} - 1}{(x_{n}+1)e^{x_{n}}}$
 $= \frac{x_{n}^{2}e^{x_{n}} + 1}{(x_{n}+1)e^{x_{n}}}$
From here one can compute x_{n}, x_{n}, x_{n} .
 $x_{n} = \dots$ is the final answer.

(b) Observe that
$$f(\lambda) = \frac{1}{2}e^{\lambda t} - 1 < 0$$
 and
 $f(1) = e -1 > 0$
One can pick the initial interval as
 $(a_0, b_0) = [\frac{1}{2}, 1]$
Then find $(a_1, b_1), (a_1, b_2), (a_3, b_3).$
 $C_3 = \frac{a_3 + b_3}{2} = \dots$ is the final answer.