Worksheet

1/29/2020
Name:

1. Newton's method can be used to compute approximately $\sqrt{3}$ by the procedure:

- Find a function f such that $x_{*}=\sqrt{3}$ is a root.
- Write the iteration formula of Newton's method.
- Pick a point x_{0} as the initial iteration. The closer x_{0} is to x_{*} the better.
- What do you get for x_{4} ?

$$
\text { See Lecture } 10
$$

2. Find approximately the intersection point of the graph of $u(x)=e^{x}$ and the graph of $v(x)=$ $1 / x$ by
(a) Newton's method (3iterations).
(b) Bisection method (3 iterations).

The intersection point solves the equation

$$
e^{x}=\frac{1}{x}
$$

Which is equivalent to $x e^{x}=1$.
We will find approximate root of

$$
f(x)=x e^{x}-1
$$

(a) Use Newton's method:

$$
\text { we have } f^{\prime}(x)=x e^{x}+e^{x}=(x+1) e^{x}
$$

lick $x_{0}=1$. The iteration formula is

$$
\begin{aligned}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} & =x_{n}-\frac{x_{n} e^{x_{n}}-1}{\left(x_{n}+1\right) e^{x_{n}}} \\
& =\frac{x_{n}^{2} e^{x_{n}}+1}{\left(x_{n}+1\right) e^{x_{n}}}
\end{aligned}
$$

From here one can compute x_{1}, x_{2}, x_{3}.

$$
x_{3}=\ldots . \text { is the final answer. }
$$

(b) Observe that $f(1 / 2)=\frac{1}{2} e^{1 / 2}-1<0$ and

$$
f(1)=e-1>0
$$

one can pick the initial interval as

$$
\left[a_{0}, b_{0}\right)=\left[\frac{1}{2}, 1\right] .
$$

Then find $\left[a_{1}, b_{1}\right],\left[a_{4}, b_{2}\right],\left[a_{3}, b_{3}\right]$.
$c_{3}=\frac{a_{3}+b_{3}}{2}=\ldots$ is the final answer.

