Name: \qquad

1. Consider a sequence defined recursively as follows.

$$
x_{n+1}=\frac{1}{4}\left(x_{n}^{3}-3 x_{n}+6\right), \quad x_{0}=1.5 .
$$

(a) Use your pocket calculator to guess the limit of this sequence. Then use the recursive formula to verify that this number is truly a limit of $\left(x_{n}\right)$.
(b) Find the order of convergence. If the order of convergence is 1 , find the linear rate of convergence.

$$
\begin{aligned}
& x_{1}=\frac{1}{4}\left(x_{0}^{3}-3 x_{0}+6\right)=1.21875 \\
& x_{2}=\frac{1}{4}\left(x_{1}^{3}-3 x_{1}+6\right) \approx 1.0386 \\
& x_{3}=\frac{1}{4}\left(x_{2}^{3}-3 x_{2}+6\right) \approx 1.0011 \\
& x_{4}=\frac{1}{4}\left(x_{3}^{3}-3 x_{3}+6\right) \approx 1.00000096
\end{aligned}
$$

The limit of $\left(x_{n}\right)$ seems to be 1 .
To check that this limit is indeed 1, we put $a=\lim x_{n}$. Then take the limit of both sides of the equation

$$
x_{n+1}=\frac{1}{4}\left(x_{n}^{3}-3 x_{n}+6\right) .
$$

We get

$$
a=\frac{1}{4}\left(a^{3}-3 a+6\right)
$$

which is equivalent to $a^{3}-7 a+6=0$,
which is equivalent to $(a-1)\left(a^{2}+a-6\right)=0$,
which is equivalent to

$$
(a-1)(a-2)(a+3)=0
$$

This equation gives $a=1$ or $a=2$ or $a=-3$.
Because the sequence is never close to 2 or -3 , the limit must be $a=1$.

To find the order of convergence, we subtract 1 from both sides of the iteration formula:

$$
\begin{aligned}
& x_{n+1}-1=\frac{1}{4}\left(x_{n}^{3}-3 x_{n}+6\right)-1=\frac{1}{4}\left(x_{n}^{3}-3 x_{n}+2\right) \\
& =\frac{1}{4}\left(x_{n}-1\right)\left(x_{n}^{2}+x_{n}-2\right) \\
& =\frac{1}{4}\left(x_{n}-1\right)\left(x_{n}-1\right)\left(x_{n}+2\right) \\
& =\frac{1}{4}\left(x_{n}-1\right)^{2}\left(x_{n}+2\right) \text {. }
\end{aligned}
$$

Now take the absolute value of both sides:

$$
\left|x_{n+1}-1\right|=\frac{1}{4}\left|x_{n}-1\right|^{2}\left|x_{n}+2\right|
$$

In other words,

$$
e_{n+1}=\frac{1}{4} e_{n}^{2}\left|x_{n}+2\right| \approx \frac{1}{4} e_{n}^{2}|1+2|=\frac{3}{4} e_{n}^{2} \quad \text { (when } n \text { is large) }
$$

Thus, the order of convergence is $p=2$.
2. We will use Newton's method to find approximate solutions of the system

$$
\left\{\begin{array}{c}
x+\sin y=1 \\
x y+\sin x=1
\end{array}\right.
$$

(a) Write an iteration formula of the Newton's method.
(b) Do 3 iterations with $\left(x_{0}, y_{0}\right)=(1,1)$.
Well work on this after the midterm exam.

