Name: \qquad

1. Consider the function $f(x)=\frac{\sin x}{x}$. Find a polynomial P such that

$$
\max _{x \in[1,2]}|f(x)-P(x)|<10^{-3} .
$$

we have

$$
\begin{aligned}
\sin x & =x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots \\
& =\underbrace{x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots+(-1)^{n} \frac{x^{2 n-11}}{(2 n+1)!}}_{q_{2 n+1}(x)}+\underbrace{\cdots \cdots}_{r_{2 n+1}(x)}
\end{aligned}
$$

Diveck both sides by x :

$$
\underbrace{\frac{\sin x}{x}}_{f(x)}=\underbrace{1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\cdots+(-1)^{n} \frac{x^{2 n}}{(2 n+1)!}}_{\frac{q_{2 n+1}(x)}{x}}+\underbrace{\cdots}_{\frac{r_{2 n+1}(x)}{x}}
$$

We see that $\frac{q_{2 x+1}(x)}{x}$ must be the (2n)'th Taylor polynomial of $f(x)$, and $\frac{r_{2 n t+}(x)}{x}$ must be the corresponding error term.

Thus

$$
\begin{aligned}
& P_{2 n}(x)=\frac{q_{2 n+1}(x)}{x}=\sum_{k=0}^{n}(-1)^{k} \frac{x^{2 k}}{(2 k+1)!}, \\
& R_{2 n}(x)=\frac{v_{2 n+1}(x)}{x} .
\end{aligned}
$$

We have

$$
f(x)=P_{2 n}(x)+R_{2 n}(x)
$$

We choose $P(x)=p_{2 n}(x)$, with n to be determined

How to determine n ?

$$
f(x)-\underline{P}(x)=f(x)-p_{2 n}(x)=R_{2 n}(x) .
$$

We need to choose n such that

$$
\max _{x \in[1,2]}\left|R_{2 n}(x)\right|<10^{-3}
$$

It is difficult to apply Lagraage's theorem directly to function f. But it is easier to apply Lagrange's theorem to function $g(x)=\cos x$. The error term of f and the error term of g are related to each other by

$$
R_{2 n}(x)=\frac{R_{2 n+1}(x)}{x} .
$$

By Lagrange's theorem,

$$
r_{2 n+1}(n)=\frac{g^{(2 n+2)}(c)}{(2 n+2)!} x^{2 n+2}
$$

for some C in between 0 and x. Then

$$
R_{2 n}(x)=\frac{r_{m+1}(x)}{x}=\frac{g^{(2 n+2)}(c)}{(2 x+2)!} x^{2 n+1}
$$

Take the absolute value of both sides:

$$
\begin{equation*}
\left|R_{2 n}(x)\right|=\frac{\left|g^{(2 n+2)}(c)\right|}{(2 n+2)!}|x|^{2 n+1} \tag{*}
\end{equation*}
$$

Because $g^{(2 n+2)}$ can only be $\cos , \sin ,-\cos ,-\sin$, its values are always in between -1 and 1 . Thus, $\left|g^{(2 n+2)}(c)\right| \leq 1$ (regardless of where c is). Also, because $x \in[1,2],|x| \leq 2$. By $(*)$ we get

$$
\left|R_{2 n}(x)\right| \leqslant \frac{1}{(2 n+2)!} 2^{2 n+1} \quad \forall x \in[1,2] .
$$

To guarantee that $\max _{x \in l, 2]}\left|R_{2 n}(x)\right| \leq 10^{-3}$, we only need to find a large n such that $\frac{1}{(2 n+2)!} 2^{2 n+1}<10^{-3}$. By testing with calculator, one can choose
2. Use a suitable numerical method to find an approximation of each root of the polynomial $x^{3}-3 x-1$ with allowed error $\epsilon=10^{-2}$.
sketch the graph:

The polynomial has 3 coots because

$$
\left.\begin{array}{l}
f(-2)=-3<0 \\
f(-1)=1>0 \\
f(0)=-1<0
\end{array}\right\} \text { root } r_{1} \in(-2,-1)
$$

$$
f(x)=x^{3}-3 x-1
$$

Note that f has only 3 rots because it is a polynomial of degree 3 . We need to find approximate values of r_{1}, r_{2}, r_{3} with allowed error 10^{-2}. we should use Bisection method because it tells us how many steps to take to get an approximate value with the prescribed error.

- Compute r_{i} :

The initial interval is $\left[a_{0}, b_{0}\right]=[-2,-1]$.
The number of steps we need to take is

$$
n \geqslant \log _{2}\left(\frac{b_{0}-a_{0}}{\varepsilon}\right)-1=\log _{2}\left(\frac{1}{10^{-2}}\right)-1 \approx 5.6
$$

Thus, 6 steps would be enough.

$$
\begin{aligned}
& c_{0}=-1.5 \\
& f\left(c_{0}\right)=f(-1.5)>0 \\
& c_{1}=-1.75 \\
& f\left(c_{1}\right)=f(-1.75)
\end{aligned}
$$

