Name: \qquad

1. Given an integer n and numbers $\alpha_{j}, \beta_{j}, \gamma_{j}$ for $j=1,2, \ldots, n-1$, how would you solve for $M_{1}, M_{2}, \ldots, M_{n}$ from the following system?

$$
\left\{\begin{array}{cll}
\alpha_{1} M_{1}+\beta_{1} M_{2} & = & \gamma_{1} \\
\alpha_{2} M_{2}+\beta_{2} M_{3} & = & \gamma_{2} \\
\ldots & \cdots & \cdots \\
\alpha_{n-1} M_{n-1}+\beta_{n-1} M_{n} & = & \gamma_{n-1}
\end{array}\right.
$$

Can you write an algorithm to solve it?
Because there are n unknowns and $n-1$ equations, we have the freedom to choose one unknown. Let us choose $M_{L}=0$. Then M_{2} can be found from the first equation:

$$
M_{2}=\frac{\gamma_{1}-\alpha_{1} M_{1}}{\beta_{1}}
$$

Then M_{3} can be found from the second equation

$$
M_{3}=\frac{\gamma_{2}-\alpha_{2} M_{2}}{\beta_{2}}
$$

and so on. One can write the procedure as an algorithm as follows.
$M_{1}=a$; (some specific number)
for $j=2: n$

$$
M_{j}=\frac{\gamma_{j-1}-\alpha_{j-1} M_{j-1}}{\beta_{j-1}}
$$

end

* Matrix method:

One can solve the system using matrix method. with M1 considered as being known, we can write the system as

$$
\left\{\begin{array}{c}
\beta_{1} M_{2}=\gamma_{1}-\alpha_{1} M_{1} \\
\alpha_{2} M_{2}+\beta_{2} M_{3}=\gamma_{2} \\
\cdots \\
\alpha_{n-1} M_{n-1}+\beta_{n-1} M_{n}=\gamma_{n-1}
\end{array}\right.
$$

In matrix form,

This is the form $A X=b$. The solution is $X=A^{-1} b$.
One can enter matrix A in Matlab by first initializing A as an $(n-1) \times(n-1)$ matrix whose entries are all zeros.

$$
A=z \operatorname{eros}(n-1) ;
$$

Then we fir the coefficients on the diagonal:

$$
\text { for } \begin{aligned}
j= & 1: n-1 \\
& A(j, j)=\beta_{j} j
\end{aligned}
$$

end

Then we fix the coefficients on the sub-diagonal

$$
\text { for } \begin{aligned}
& j=1: n-2 \\
& \quad A(j, j+1)=\alpha_{j+1} ;
\end{aligned}
$$

end
2. How would you plot the following functions on the interval $[0,3]$ on the same graph using Matlab? (Use the command hold on)

$$
\begin{aligned}
& s_{1}(t)=-t^{2}+t \\
& s_{2}(t)=t^{2}-3 t+2 \\
& s_{3}(t)=t^{2}-5 t+6
\end{aligned}
$$

$$
\text { See lecture } 24 \text { (toward the end). }
$$

