Name:

Let us compute approximately the integral $I = \int_1^3 x^2 dx$ by

- left-point rule (call the sum L_n),
- trapezoidal rule (call the sum T_n),

with n+1 equally spaced sample points $1 = x_0 < \ldots < x_n = 3$.

- (a) Write L_n and T_n using sigma notation.
- (b) Find n such that L_n approximates I with error not exceeding $\epsilon = 10^{-4}$.
- (c) The same question as in Part (b) for T_n .

(a)

The width of each subinterval is

$$h = \frac{3-1}{n} = \frac{2}{n}$$
.

We have

$$x_i = 1 + h$$

Thus, $n_k = 1 + kh = 1 + \frac{2k}{n}$.

The left-point Riemann sum is

$$L_n = hf(x_0) + . + hf(x_{n-1}) = h \sum_{k=0}^{n-1} f(x_k)$$

$$L_n = h \sum_{k=0}^{n-1} \left(1 + \frac{2k}{n}\right)^{2k}$$

$$T_{n} = \frac{1}{2} h \left(f(x_{0}) + f(x_{1}) + \dots + \frac{1}{2} h \left(f(x_{n-1}) + f(x_{n}) \right) \right)$$

$$= \frac{1}{2} h \sum_{k=0}^{n-1} \left(f(x_{k}) + f(x_{k+1}) \right)$$

$$= \frac{1}{2} h \sum_{k=0}^{n-1} \left(\left(1 + \frac{2k}{n} \right)^{2} + \left(1 + \frac{2(k+1)}{n} \right)^{2} \right)$$

We will do last (b) and (c) next time.