Name: \qquad
Let us compute approximately the integral $I=\int_{1}^{3} x^{2} d x$ by

- left-point rule (call the sum L_{n}),
- trapezoidal rule (call the sum T_{n}),
with $n+1$ equally spaced sample points $1=x_{0}<\ldots<x_{n}=3$.
(a) Write L_{n} and T_{n} using sigma notation.
(b) Find n such that L_{n} approximates I with error not exceeding $\epsilon=10^{-4}$.
(c) The same question as in Part (b) for T_{n}.
(a)

The width of each subinterval is

$$
h=\frac{3-1}{n}=\frac{2}{n}
$$

We have

$$
\begin{aligned}
& x_{0}=1 \\
& x_{1}=1+h \\
& x_{2}=1+2 h \\
& \ldots \\
& x_{n}=1+n h
\end{aligned}
$$

$$
\text { Thus, } x_{k}=1+k h=1+\frac{2 k}{n} \text {. }
$$

The left-point Riemann sum is

$$
\begin{aligned}
& L_{n}=h f\left(x_{0}\right)+\ldots+h f\left(x_{n-1}\right)=h \sum_{k=0}^{n-1} f\left(x_{k}\right) \\
&=h \sum_{k=0}^{n-1} x_{k}^{2} \\
& L_{n}=h \sum_{k=0}^{n-1}\left(1+\frac{2 k}{n}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
T_{n} & =\frac{1}{2} h\left(f\left(x_{0}\right)+f\left(x_{n}\right)\right)+\cdots+\frac{1}{2} h\left(f\left(x_{n-1}\right)+f\left(x_{n}\right)\right) \\
& =\frac{1}{2} h \sum_{k=0}^{n-1}\left(f\left(x_{k}\right)+f\left(x_{k+1}\right)\right) \\
& =\frac{1}{2} h \sum_{k=6}^{n-1}\left[\left(1+\frac{2 k}{n}\right)^{2}+\left(1+\frac{2(k+1)}{n}\right)^{2}\right]
\end{aligned}
$$

We will do Part (b) and (c) next tine.

