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My research interest is in Partial Differential Equations, Numerical Analysis, Probability
theory, and their applications in Fluid Mechanics and Mathematical Biology. I am also inter-
ested in the relation between stochastic processes and the analysis of PDE. My recent research
has been on the regularity theory of the Navier-Stokes Equations and several modeling equa-
tions. In the following, I will briefly describe some of my recent projects, their motivations, and
my future research plans.

1 Global regularity criterion based on approximate solutions

Let us consider the Cauchy problem for the incompressible Navier-Stokes equations:

(NSE) :


∂tu−∆u+ u · ∇u+∇p = 0 in R3 × (0,∞),

div u = 0 in R3 × (0,∞),
u(·, 0) = u0 in R3.

The system has a scaling property:

u(x, t)→ λu(λx, λ2t), p(x, t)→ λ2p(λx, λ2t), u0(x)→ λu0(λx)

where λ ∈ R. While the global-wellposedness of (NSE) is still not known, a variety of regularized
systems obtained by mollifying the nonlinear term u · ∇u are known to be globally wellposed.
Regularizations of the nonlinear term often involve a resolution parameter ε. Two well-known
examples are

1. The classical Leray regularization (u ∗ ηε) · ∇u,

2. The regularization Pε(u · ∇u), where Pε is an orthogonal projection on L2(R3) whose
Fourier multiplier is a smooth cutoff function supported in the ball B2ε−1 and equal to 1
in the ball Bε−1 .

These approximations generate a family of global smooth approximate solutions to (NSE), which
can be useful for the construction of global weak solutions. Full information on the behavior of
a sequence of approximate solutions as ε ↓ 0 gives information on the exact solution. However,
in practice we only have information about finitely many approximate solutions. Let us in fact
assume that we know only one approximate solution for a certain value of ε. It is natural to
consider two following questions:

(Q) Under what conditions can we infer global regularity for the exact solution?
How large can ε be in terms of the “observable” quantity M to still guarantee global
regularity of exact solutions?
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These questions have been addressed by Li in [14] from a computational perspective. He
considered a discretized Navier-Stokes system on a polyhedron and showed that if a numer-
ical solution uε corresponding to some mesh size ε is of size M (the L∞-norm) with ε ∼
exp(−(‖u0‖H1

0∩H2 + 1)αMα), where α is a large number, then the exact solution is regular for
all times. This leads to a type of global regularity criteria based on approximate solutions. It
differs from most of the well-known criteria in that they often require some smallness condition
on the initial condition, e.g. [10, 11], or some symmetry on the initial condition, e.g. [9, 12].

My paper [19] is an investigation of a global regularity criterion based on continuous ap-
proximate solutions on the whole space R3. In this setting, the problem already contains the
key difficulties but is technically simpler. Consider the regularized Navier-Stokes system:

(NSE)ε :


∂tu−∆u+ [u · ∇u]ε +∇p = 0,

div u = 0,
u(·, 0) = u0

where [u · ∇u]ε is used as a common notation for two types of regularizations mentioned above.
To answer the first question, I give a simple criterion involving the resolution parameter ε,
the size M (the L∞-norm) of the corresponding approximate solution uε, and the total energy
‖u0‖2L2 which guarantees that the exact solution is regular globally. The scaling symmetry can
be used to predict possible answers to the second question. Often, the resolution parameter
ε can be normalized to have the same scaling as spatial length. Since both ε and M−1 are
of dimension length, it seems reasonable to expect a rate of ε ∼ M−1. However, the time-
dependence nature complicates the problem. For one reason, the initial energy ‖u0‖2L2 also has
the same scaling as spatial length and, thus, can be considered as another length scale of the
problem. Another reason is that the higher initial energy naturally requires finer resolution in
order to capture complex structures of the exact solution at small scales. I obtain the following
result:

Theorem 1 ([19]) Suppose (NSE)ε has a global mild solution uε bounded by M . If ε ∼
M−1 exp(−‖u0‖4L2M

2) then (NSE) has a global mild solution bounded by 2M .

This is an improvement of the condition in [14] although our regularizations are different and,
in particular, infinite-dimensional. I give two different approaches, global estimates and local
estimates, leading to essentially the same result. The main difficulty is to keep track of the
error in the solution as it propagates over time. The main strategy is to estimate the growth
of local energy over each time-step of order O(M−2), and then use a generalized ε-regularity
criterion to show local regularity.
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2 Le Jan–Sznitman cascade solutions

For d ≥ 1, let us consider the Cauchy problem for the d-dimensional incompressible Navier-
Stokes equations:

(NSE) :


∂tu−∆u+ u · ∇u+∇p = 0 in Rd × (0,∞),

div u = 0 in Rd × (0,∞),
u(·, 0) = u0 in Rd.

The system is invariant under the natural scalings u0(x)→ λu0(λx) and u(x, t)→ λu(λx, λ2t).
The well-posedness of (NSE) is not known for any d ≥ 3, although different partial results are
known depending on what class of solutions is under consideration.

The symbiotic relation between stochastic processes and the analysis of PDE has a long
and rich history illustrated, for example, by the role of Brownian motion and general diffusions
in the study of properties of harmonic functions and parabolic PDE. The seminal work [16] of
McKean in 1975 is perhaps the first example of the use of branching processes in the analysis
of semilinear parabolic equations. In 1997, Le Jan and Sznitman used a similar method for
the 3D Navier-Stokes equations [13]. They obtained a solution to the integral equation of the
Fourier transformed Navier-Stokes equations (FNS). This class of solutions is known as cascade
solutions. The well-posedness of (FNS) in the class of cascade solutions is still open.

Le Jan and Sznitman’s construction of cascade solutions requires overcoming two obstacles,
the understanding of which can shed light on the existence and uniqueness of cascade solutions,
and the connection between cascade solutions and mild solutions (i.e. solutions obtained by
fixed point method) of (FNS). I now briefly describe these obstacles. Then I will describe
three of my research projects on dealing with them. To construct a cascade solution, one
normalizes û to χ = cû/h. Here h = h(ξ) > 0, called majorizing kernel, is a function such that
H(η|ξ) = h(η)h(ξ − η)/(|ξ|h(ξ)) is a probability density with respect to η. Then χ satisfies

(FNS) : χ(ξ, t) = e−t|ξ|
2
χ0(ξ) +

∫ t

0
e−s|ξ|

2 |ξ|2
∫
Rd

χ(η, t− s)�ξ χ(ξ − η, t− s)H(η|ξ)dηds.

For each ξ ∈ Rd\{0} and t > 0, one defines a stochastic functional X recursively as

X(ξ, t) =

{
χ0(ξ) if T0 > t,

X(1)(W1, t− T0)�ξX(2)(ξ −W1, t− T0) if T0 ≤ t

where

• T0 is an exponentially distributed random variable with mean |ξ|−2,

• W1 is an Rd-random variable independent of T0 with conditional distribution H(η|ξ),
• X(1) and X(2) are independent copies of X.

The definition of X needs three ingredients: time clocks, a branching process, and a product
�ξ. The product satisfies |a �ξ b| ≤ |a||b| but is neither commutative nor associative. The
branching process, as illustrated in the figure below, can be described intuitively as follows: on
the full binary tree, label the root by ξ. After a waiting time T0, we either stop the branching
process (when T0 > t) or split into two branches (when T0 ≤ t). In the latter scenario, a wave
number W1 is sampled according to distribution H(η|ξ). Then the root of the first branch
is labeled by W1, the root of the second branch by ξ − W1. The process continues at each
branch independently of each other. The combination of the clocks and branching process is
called as cascade structure. In closed form, X is a product of the values of χ0 at many different
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locations. Modulo a few technical modifications, cascade solution to (FNS) is essentially defined
as χ(ξ, t) = Eξ,tX. There are two major issues underlying this definition.

The first issue is stochastic explosion: the branching process might keep going indefinitely,
potentially making the stochastic functional X not well-defined. Le Jan and Sznitman over-
came this obstacle by a somewhat artificial procedure: they incorporated a force term into the
definition of X, even in the case of no forcing, as a means to terminate the cascade. Stochastic
explosion is an intrinsic property of the cascade structure described above and depends only
on the choice of majorizing kernel h. Knowing whether explosion can happen for a given h is,
on one hand, a natural question from probabilistic perspective. On the other hand, from PDE
perspective, explosion is equivalent to nonuniqueness of a scalar pseudo-differential equation

(gNSE):

{
∂tu−∆u =

√
−∆(u2) in Rd × (0,∞),

u(·, 0) = c1ȟ in Rd.

known as the genealogical Navier-Stokes equation. Among the known majorizing kernels in R3

are the self-similar kernel hs(ξ) = c|ξ|−2 and the Bessel kernel hb(ξ) = c|ξ|−1e−|ξ|. In my paper
[5] with Dascaliuc, Thomann and Waymire, we show the following:

Theorem 2 ([5]) The self-similar cascade of the 3D Navier-Stokes equations is explosive.

As a consequence, (gNSE) has two solutions in the class {u : |ξ|2|û| ≤ 1}. A distinct
difference between the self-similar kernel and the Bessel kernel is that the latter is less singular
at 0 and has rapid decay at infinity. Heuristically, the corresponding distribution H(η|ξ) puts
more weight on smaller wave numbers, thereby discouraging explosion. Although it is not yet
clear how to show non-explosion by probability techniques, the PDE picture is clearer. In my
upcoming paper [18] with Chris Orum, we show the following:

Theorem 3 ([18]) The Bessel cascade of the 3D Navier-Stokes equations is non-explosive.

The key observation is that the Bessel kernel puts the initial condition u0 = cȟ in L3, a critical
space with respect to scaling. In this situation, we are able to adapt the local regularity theory
of mild solutions of (NSE), as done by Kato in [10], to (gNSE).

The second issue in the construction of cascade solutions is the existence of expectation: it
may happen that Eξ,t|X| = ∞. Le Jan and Sznitman overcame this obstacle by introducing a
simple condition |χ0| ≤ 1, which guarantees |X| ≤ 1. The role of this condition is illustrated
more clearly when h is the self-similar kernel. In this case, (FNS) has a scaling property
χ0(ξ)→ χ0(λ−1ξ) and χ(ξ, t)→ χ(λ−1ξ, λ2t). In the terminology of Caffarelli-Kohn-Nirenberg,
χ0 and χ are dimensionless quantities. Then L∞ is a critical space for both χ0 and χ. Therefore,
the result obtained by Le Jan–Sznitman is consistent with the rule of thumb that if the initial
condition is sufficiently small in a critical space then a global strong solution exists.
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On the other hand, it is known from the theory of mild solutions of (NSE) that smallness
of u0 in Ḣd/2−1 implies a global mild solution. Its norm can be expressed in terms of χ0 as

‖u0‖Ḣd/2−1 = Cd

{∫
Rd

|ξ|d−2h2(ξ)|χ0(ξ)|2dξ
}1/2

.

The smallness of u0 in Ḣd/2−1 amounts to smallness of χ0 in a global (integral) sense. Such a
condition allows |χ0| to be large in certain regions. However, it is not clear from the cascade
picture whether Eξ,t|X| is finite because branches could terminate in regions where |χ0| is large.
In my paper [22] with Enrique Thomann, we address the following questions:

(Q) Can the smallness of χ0 in some integral sense guarantee that the cascade
solution is well-defined? What are some natural settings for χ0 and χ other than
L∞? In what case can one achieve local (or global) existence and uniqueness of
solutions? Do cascade solutions coincide with mild solutions of (FNS)?

Our main result can be stated roughly as follows:

Theorem 4 ([22]) Let X be an adapted value space for (FNS), i.e. a setting for χ0 where
fixed point method works. Then cascade solution is well-defined almost everywhere up to the
time when mild solution ceases to exist and coincides with the mild solution almost everywhere.

In particular, the smallness of χ0 in Ḣd/2−1 indeed yields a global cascade solution χ. The
key observation is that cascade solutions to (FNS) are dominated by cascade solutions of the
so-called majorizing Navier-Stokes equation.

(mNSE):

{
∂tu−∆u =

√
−∆(u2) in Rd × (0,∞),

u(·, 0) = u0 in Rd.

The main difficulty is to find a suitable functional/norm to control the size of the cascade
solution. Our introduction of admissible functionals enables us to do so. They are compatible
with the norm of admissible path spaces in the fixed point method. In particular, when χ0

belongs to an adapted value space, the cascade solution is the limit of a Picard iteration and,
thus, coincides with mild solution. This observation is consistent with [1].

3 Minimal blowup data

The question whether there exists a minimal initial datum leading to a blowup solution of the
3D Navier-Stokes equations, under the assumption that there exists an initial datum leading to
finite-time singularities, has attracted the interest of mathematicians in the recent years. On
one hand, answers to this question can shed light on the behavior of blowup solutions if they
exist. On the other hand, existence of minimal blowup data of a given differential equations
is a topic of its own interest. For example, finding minimal blowup data can be seen as an
optimization problem when the size of minimal blowup datum is interpreted as the minimal
cost one must pay to generate a blowup solution. The question was addressed for the harmonic
map heat flow in [2, 3] and semilinear Schrödinger equation in [24]. For the Navier-Stokes
equations, the answer is affirmative in the settings that have been considered [6, 7, 8, 15, 23,
25]. In the following, I will describe two of my research projects on this topic. They will appear
in [21] (an extraction of my PhD thesis [20]) and [4].
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First, let us formulate the problem generally as follows. For Ω ⊂ R3, consider the initial
boundary value problem for the Navier-Stokes equations in Ω× (0,∞)

(NSE)Ω :


∂tu−∆u+ u · ∇u+∇p = f in Ω× (0,∞),

div u = 0 in Ω× (0,∞),
u = 0 in ∂Ω× (0,∞),

u(·, 0) = u0 in Ω.

For Ω = R3 or R3
+, the problem has a scaling symmetry u0(x) → λu0(λx) and f(x, t) →

λ3f(λx, λ2t). The initial condition u0 and the external force f are assumed to be in critical
spaces with respect to the natural scaling, namely X and Y respective. In general, it is known
that (NSE)Ω is globally well-posed in the class of mild solutions in L5

t,x for sufficiently small
data (u0, f) ∈ X × Y . Global well-posedness for large data is still not known.

Let ρΩ
max be the supremum of all ρ > 0 such that (NSE)Ω is globally well-posed for every

(u0, f) with ‖(u0, f)‖X×Y = ‖u0‖X + ‖f‖Y < ρ. For convenience, we will denote it as ρmax if
Ω = R3, and ρ+

max if Ω = R3
+. Although it is not known whether ρΩ

max is finite or infinite, we
are interested in the hypothetical situation when ρΩ

max is finite. We consider the question:

(Q) If ρΩ
max is finite, does there exist a data (u0, f) ∈ X × Y with ‖(u0, f)‖ = ρΩ

max,
such that the solution u of the system (NSE)Ω blows up in finite time?

We call such a pair (u0, f) a minimal blowup data. For Ω = R3 and f = 0, affirmative answers
are given in [6, 7, 8, 15, 25] for different choices of X, including L3. It is known that physical
boundaries complicate the regularity theory, especially the treatment of pressure at the bound-
ary. In my upcoming paper with Vladimı́r Šverák [21], we study the influence of the boundary
on the existence of minimal blowup data. The main difficulties are (1) the low regularity of
pressure at the boundary, and (2) the instability of blowup solutions with respect to localization
of domains. To deal with the second issue, we introduce the force term to make the definition
of ρΩ

max more stable under the change of domains and perturbation of equations. To deal with
the the first issue, we introduced a class of weak solutions called sw-solutions, based on the idea
of Seregin and Šverák [26]. This type of weak solutions is shown to be suitable for boundary
regularity. We note that the following Lebesgue weighted critical spaces, as a choice for Y , is
better suited for our analysis than the critical Lebesgue spaces L5/3. Our method works well
for both the half-space and the whole space.

Yq = {f : Ω× (0,∞)→ R3 : tq∗f ∈ Lq(Ω× (0,∞))}

with ‖f‖Yq = ‖tq∗f‖Lq and q∗ = 3/2− 5/(2q). Our main result is the following.

Theorem 5 ([20]) For Y = Yq with 5/2 < q < 3, we have

(a) If ρmax <∞ then there exists a minimal blowup data for (NSE).

(b) ρ+
max ≤ ρmax.

(c) If ρ+
max < ρmax then there exists a minimal blowup data for (NSE)+.

When ρ+
max < ρmax, the boundary “facilitates” blowup in sense that all singularities, if exist,

must stay within a finite distance from the boundary. The case ρ+
max = ρmax happens only

when the singularities move away from the boundary. In this scenario, the boundary seems to
obstruct the existence of minimal blowup data.

While it is not known if a smooth, rapidly decaying initial datum could produce a finite-time
blowup solution to (NSE), Montgomery-Smith [17] showed that it is the case for the majorizing
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Navier-Stokes equation (mNSE) (which he called a cheap Navier-Stokes equation). This scalar
equation has the same scaling symmetry as the Navier-Stokes equations. It is natural to ask
whether minimal blowup data exist for (mNSE), for example, in the critical setting u0 ∈ L3.

The available methods for the Navier-Stokes equations rely on some types of local energy
estimates. These estimates serve two purposes. First, they guarantee that the singularities are
stable under weak limit of initial conditions. Secondly, they give global mild solutions decay
as t → ∞. In particular, if u belongs to L5 for all finite times, it stays in L5(R3 × (0,∞)).
Unfortunately, there are no energy estimates that could serve similar purposes in (mNSE). In
fact, the counter-example constructed by Montgomery-Smith has infinite kinematic energy at
blowup time. In my upcoming paper [4] with Radu Dascaliuc, we study the existence of minimal
blowup data for (mNSE) by Le Jan–Sznitman cascade method. We obtain the following.

Theorem 6 ([4]) Consider initial condition of the form

u0(x) =
γ

1 + |x|2
∈ L3(R3). (1)

For γ ≥ 2, the mild solution to (mNSE) blows up at some T ≤ ∞ in sense that ‖u‖L5(R3×(0,T )) =
∞. For 0 ≤ γ < 2, the mild solution belongs to L5(R3 × (0,∞)).

The fact that the Fourier transform of (mNSE) has the same cascade structure as (FNS) enables
us to formulate the problem in Fourier domain. Specifically, for χ = cû/h and χ0 = cû0/h,

χ(ξ, t) =
∞∑
k=1

χk0 pk(ξ, t)

where pk(ξ, t) denotes the probability that the binary tree rooted at ξ has exactly k branches
crossing the horizon. If u0 satisfies (1) and h is equal to the Bessel kernel, then χ0 is a constant.
The key observation is that the critical value γ = 2 corresponds to a time-independent solution
u, which blows up at T = ∞ according to our definition. The main difficulty is how to obtain
decay of χ as t → ∞ in the case 0 ≤ γ < 2. We obtain an exponential decay through suitable
estimates for pk.

4 Other research plans

Pertaining to the project in Section 1, I plan to study the relation of ε (resolution parameter)
and M (size of approximate solution) in the case of stationary NSE. This is possibly the setting
where the ideal relation ε ∼M−1 would hold. On the project in Section 2, I plan to investigate
further the question: can stochastic explosion, which is now known for 3D self-similar cascade,
provide a pathway to nonuniqueness of NSE in the class of cascade solutions?

As a young scholar, I enjoy learning different aspects of mathematical analysis, and I am
open to participating in various research directions. Beside the Navier-Stokes equations, I am
also interested in other PDE and stochastic PDE arising from turbulent flows, quantum physics,
biology and other disciplines. I plan to explore one or more of these fields in the future.
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[25] W. Rusin and V. Šverák. “Minimal initial data for potential Navier-Stokes singularities”.
In: J. Funct. Anal. 260.3 (2011), pp. 879–891.

[26] G. Seregin and V. Šverák. “On global weak solutions to the Cauchy problem for the Navier-
Stokes equations with large L3-initial data”. In: Nonlinear Anal. 154 (2017), pp. 269–296.

9

https://arxiv.org/abs/1910.05500

