Be careful:
$(a+b)^{2} \neq a^{2}+b^{2}$
$(a+b)^{3} \neq a^{3}+b^{3}$
You can plug specific numbers to see that. Ex $(1+2)^{2}=9 \neq 1^{2}+2^{2}$

The following 7 identities are very often used. Let's try to be familiar with them.
(i) $(a+b)^{2}=a^{2}+2 a b+b^{2}$
(ii) $(a-b)^{2}=a^{2}-2 a b+b^{2}$
(iii) $a^{2}-b^{2}=(a-b)(a+b)$
(iv) $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$
(v) $(a-b)^{3}=a^{3}-3 a^{2} b+3 a b^{2}-b^{3}$
(vi) $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$
(vii) $a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right)$

