Be careful:

$$(a+b)^2 \neq a^2 + b^2$$

 $(a+b)^3 \neq a^3 + b^3$

You can plug specific numbers to see that. Ex $(1+2)^2 = 9 \neq 1^2 + 2^2$

The following 7 identities are very often used. Let's try to be familiar with them.

(i)
$$(a+b)^2 = a^2 + 2ab + b^2$$

(ii)
$$(a-b)^2 = a^2 - 2ab + b^2$$

(iii)
$$a^2 - b^2 = (a - b)(a + b)$$

(iv)
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

(v)
$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

(vi)
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

(vii)
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$