Main points in Section 6.2

TA: Tuan Pham

Updated September 13, 2012

Contents

- 1 Important formulas
- 2 Important table of values
- 3 Given the angle. Find the values of 6 trigonometric functions
- 4 Given (x,y). Find the values of 6 trigonometric functions

1 Important formulas

If we know $\cos \theta$ and $\sin \theta$, we can find the other trigonometric functions :

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \tag{1}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta}$$
(2)

$$\sec \theta = \frac{1}{\cos \theta} \tag{3}$$

$$\csc \theta = \frac{1}{\sin \theta} \tag{4}$$

2 Important table of values

θ radians	θ degrees	$\sin \theta$	$\cos \theta$
0	00	0	1
$\frac{\pi}{6}$	30^{0}	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{3}$	60^{0}	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
$\frac{\pi}{4}$	45^{0}	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
$\frac{\pi}{2}$	90^{0}	1	0

3 Given the angle. Find the values of 6 trigonometric functions

If you see the angle in the above table, you will know $\cos \theta$ and $\sin \theta$. If the angle is not there, you can follow the following steps :

- 1) Draw the angle to locate the point on unit circle.
- 2) Locate the position of the point in the unit circle. Try to relate the its position to that of 0⁰, 30⁰, 45⁰, 60⁰ or 90⁰ by realizing whether they are symmetric with respect to the center, or x-axis, or y-axis.
- **3)** Determine x and y, which give us $\cos \theta$ and $\sin \theta$ respectively.
- 4) Use the formulas (1)-(4) to find other trigonometric functions.

<u>Ex 1</u> (Problem 25, page 376) Here we are given $\theta = \frac{11\pi}{2}$. Step 1. Draw the angle :

Step 2. Locate the position of the point in the unit circle :

Step 3. We realize that x = 0 and y = -1. This means $\cos \theta = 0$ and $\sin \theta = -1$. **Step 4.** We use fomula (4) to find $\csc \theta$:

$$\csc\frac{11\pi}{2} = \csc\theta = \frac{1}{\sin\theta} = \frac{1}{-1} = -1$$

<u>Ex 2</u> (Problem 53, page 376) Here we are given $\theta = \frac{8\pi}{3}$. Step 1. Draw the angle :

Step 2. Locate the position of the point in the unit circle :

We realize that this point and the point of 60^0 are symmetric with respect to the y-axis.

Step 3. We see that x is the negative of the x-value of the point of 60° , which is $\cos 60^{\circ}$. Thus

$$x = -\cos 60^0 = -\frac{1}{2}$$

Also we see that y is exactly the y-value of the point of 60° , which is $\sin 60^{\circ}$. Thus

$$y = \sin 60^0 = \frac{\sqrt{3}}{2}$$

Therefore, now we have

$$\cos \theta = x = -\frac{1}{2}, \quad \sin \theta = y = \frac{\sqrt{3}}{2}$$

Step 4. Now we use formulas (1)-(4) to compute other trigonometric functions :

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\sqrt{3}}{2} \frac{2}{-1} = -\sqrt{3}$$
$$\cot \theta = \frac{\cos \theta}{\sin \theta} = -\frac{1}{2} \frac{2}{\sqrt{3}} = -\frac{1}{\sqrt{3}}$$
$$\sec \theta = \frac{1}{\cos \theta} = \frac{1}{-\frac{1}{2}} = -2$$
$$\csc \theta = \frac{1}{\sin \theta} = \frac{1}{\frac{\sqrt{3}}{2}} = \frac{2}{\sqrt{3}}$$

4 Given (x,y). Find the values of 6 trigonometric functions

If you are given (x, y) and asked to find the values of 6 trigonometric functions, you can follow the following steps :

- **1)** Write $r = \sqrt{x^2 + y^2}$
- 2) $\cos \theta = \frac{x}{r}$ and $\sin \theta = \frac{y}{r}$
- 3) Use the formulas (1)-(4) to find other trigonometric functions.

Ex 3 (Problem 79, page 376) Here we are given (x, y) = (2, -3). Step 1. We write

$$r = \sqrt{x^2 + y^2} = \sqrt{2^2 + (-3)^2} = \sqrt{13}$$

Step 2.

$$\cos \theta = \frac{x}{r} = \frac{2}{\sqrt{13}}$$
$$\sin \theta = \frac{y}{r} = \frac{-3}{\sqrt{13}}$$

Step 3. Now we use formulas (1)-(4) to compute other trigonometric functions :

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{-3}{\sqrt{13}} \frac{\sqrt{13}}{2} = -\frac{3}{2}$$
$$\cot \theta = \frac{\cos \theta}{\sin \theta} = \frac{2}{\sqrt{13}} \frac{\sqrt{13}}{-32} = -\frac{2}{3}$$
$$\sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{2}{\sqrt{13}}} = \frac{\sqrt{13}}{2}$$
$$\csc \theta = \frac{1}{\sin \theta} = \frac{1}{\frac{-3}{\sqrt{13}}} = -\frac{\sqrt{13}}{3}$$