Main points in Section 6.2

TA: Tuan Pham

Updated September 13, 2012

Contents

1 Important formulas
2 Important table of values
3 Given the angle. Find the values of 6 trigonometric functions
4 Given (x, y). Find the values of 6 trigonometric functions

1 Important formulas

If we know $\cos \theta$ and $\sin \theta$, we can find the other trigonometric functions :

$$
\begin{align*}
& \tan \theta=\frac{\sin \theta}{\cos \theta} \tag{1}\\
& \cot \theta=\frac{\cos \theta}{\sin \theta} \tag{2}
\end{align*}
$$

$$
\begin{equation*}
\sec \theta=\frac{1}{\cos \theta} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\csc \theta=\frac{1}{\sin \theta} \tag{4}
\end{equation*}
$$

2 Important table of values

θ radians	θ degrees	$\sin \theta$	$\cos \theta$
0	0^{0}	0	1
$\frac{\pi}{6}$	30^{0}	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{3}$	60^{0}	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
$\frac{\pi}{4}$	45^{0}	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
$\frac{\pi}{2}$	90^{0}	1	0

3 Given the angle. Find the values of 6 trigonometric functions

If you see the angle in the above table, you will know $\cos \theta$ and $\sin \theta$. If the angle is not there, you can follow the following steps :

1) Draw the angle to locate the point on unit circle.
2) Locate the position of the point in the unit circle. Try to relate the its position to that of $0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$ or 90° by realizing whether they are symmetric with respect to the center, or x -axis, or y -axis.
3) Determine x and y, which give us $\cos \theta$ and $\sin \theta$ respectively.
4) Use the formulas (1)-(4) to find other trigonometric functions.

Ex 1 (Problem 25, page 376) Here we are given $\theta=\frac{11 \pi}{2}$.
Step 1. Draw the angle:

Step 2. Locate the position of the point in the unit circle :

Step 3. We realize that $x=0$ and $y=-1$. This means $\cos \theta=0$ and $\sin \theta=-1$.
Step 4. We use fomula (4) to find $\csc \theta$:

$$
\csc \frac{11 \pi}{2}=\csc \theta=\frac{1}{\sin \theta}=\frac{1}{-1}=-1
$$

Ex 2 (Problem 53, page 376) Here we are given $\theta=\frac{8 \pi}{3}$.
Step 1. Draw the angle :

Step 2. Locate the position of the point in the unit circle:

We realize that this point and the point of 60° are symmetric with respect to the y-axis.
Step 3. We see that x is the negative of the x -value of the point of 60°, which is $\cos 60^{\circ}$. Thus

$$
x=-\cos 60^{\circ}=-\frac{1}{2}
$$

Also we see that y is exactly the y-value of the point of 60°, which is $\sin 60^{\circ}$. Thus

$$
y=\sin 60^{\circ}=\frac{\sqrt{3}}{2}
$$

Therefore, now we have

$$
\cos \theta=x=-\frac{1}{2}, \quad \sin \theta=y=\frac{\sqrt{3}}{2}
$$

Step 4. Now we use formulas (1)-(4) to compute other trigonometric functions:

$$
\begin{aligned}
\tan \theta & =\frac{\sin \theta}{\cos \theta}=\frac{\sqrt{3}}{2} \frac{2}{-1}=-\sqrt{3} \\
\cot \theta & =\frac{\cos \theta}{\sin \theta}=-\frac{1}{2} \frac{2}{\sqrt{3}}=-\frac{1}{\sqrt{3}} \\
\sec \theta & =\frac{1}{\cos \theta}=\frac{1}{-\frac{1}{2}}=-2 \\
\csc \theta & =\frac{1}{\sin \theta}=\frac{1}{\frac{\sqrt{3}}{2}}=\frac{2}{\sqrt{3}}
\end{aligned}
$$

4 Given (x, y). Find the values of 6 trigonometric functions

If you are given (x, y) and asked to find the values of 6 trigonometric functions, you can follow the following steps :

1) Write $r=\sqrt{x^{2}+y^{2}}$
2) $\cos \theta=\frac{x}{r}$ and $\sin \theta=\frac{y}{r}$
3) Use the formulas (1)-(4) to find other trigonometric functions.

Ex 3 (Problem 79, page 376)
Here we are given $(x, y)=(2,-3)$.
Step 1. We write

$$
r=\sqrt{x^{2}+y^{2}}=\sqrt{2^{2}+(-3)^{2}}=\sqrt{13}
$$

Step 2.

$$
\begin{aligned}
& \cos \theta=\frac{x}{r}=\frac{2}{\sqrt{13}} \\
& \sin \theta=\frac{y}{r}=\frac{-3}{\sqrt{13}}
\end{aligned}
$$

Step 3. Now we use formulas (1)-(4) to compute other trigonometric functions:

$$
\begin{aligned}
\tan \theta & =\frac{\sin \theta}{\cos \theta}=\frac{-3}{\sqrt{13}} \frac{\sqrt{13}}{2}=-\frac{3}{2} \\
\cot \theta & =\frac{\cos \theta}{\sin \theta}=\frac{2}{\sqrt{13}} \frac{\sqrt{13}}{-32}=-\frac{2}{3} \\
\sec \theta & =\frac{1}{\cos \theta}=\frac{1}{\frac{2}{\sqrt{13}}}=\frac{\sqrt{13}}{2} \\
\csc \theta & =\frac{1}{\sin \theta}=\frac{1}{\frac{-3}{\sqrt{13}}}=-\frac{\sqrt{13}}{3}
\end{aligned}
$$

