Main points in Section 6.3

TA: Tuan Pham

Updated September 17, 2012

Contents

- 1 Important formulas
- 2 Compute trigonometric functions of big angles
- 3 Given the sign of trigonometric functions. Find the quadrant of θ
- 4 Given one trigonometric function and the quadrant of θ . Find other trigonometric functions
- 5 Use even-odd properties to avoid negative angles

1 Important formulas

In this section, we learn 3 more important formulas :

$$\sin^2\theta + \cos^2\theta = 1 \tag{1}$$

$$\cos^2 \theta = \frac{1}{1 + \tan^2 \theta} \tag{2}$$

$$\cot \theta = \frac{1}{\tan \theta} \tag{3}$$

Recall that the 4 important formulas in Summary of 6.2 are :

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \tag{4}$$

$$\cot \theta = \frac{\cos \theta}{\sin \theta} \tag{5}$$

$$\sec \theta = \frac{1}{\cos \theta} \tag{6}$$

$$\csc \theta = \frac{1}{\sin \theta} \tag{7}$$

2 Compute trigonometric functions of big angles

A big angle is usually the one that exceeds 2π , or 360° . We use the periodic properties of trigonometric functions to reduce a big angle to a smaller one, which helps us find these functions more easily. What we need to memorize is : Only $\tan \theta$ and $\cot \theta$ have period π . The other 4 trigonometric functions have period 2π .

 $\underline{\text{Ex 1}}$ (Problem 12, page 390)

Here we are asked to find $\cos 420^{\circ}$. This is quite a large angle! We know that the function $\cos \theta$ has period 2π , or 360° . Therefore,

$$\cos 420^0 = \cos(420^0 - 360^0) = \cos(60^0) = \frac{1}{2}$$

 $\underline{\text{Ex } 2}$ (Problem 13, page 390)

Here we are asked to find $\tan 405^{\circ}$. This is also a large angle! We know that the function $\tan \theta$ has period π , or 180° . Therefore,

 $\tan 405^0 = \tan(405^0 - 180^0) = \tan(225^0) = \tan(225^0 - 180^0) = \tan 45^0 = 1$

3 Given the sign of trigonometric functions. Find the quadrant of $\boldsymbol{\theta}$

If you are given the sign of (usually two) trigonometric functions, and asked to find the quadrant of θ , you can follow the following steps :

- 1) Use the formulas (4)-(7) to find the sign of $\cos \theta$ and $\sin \theta$.
- 2) Draw the coordinate system. By keeping in mind that $\cos \theta$ is x, and $\sin \theta$ is y, you can determine which quadrant θ belongs to.

 $\underline{\text{Ex } 3}$ (Problem 31, page 390)

Here we are given $\cos \theta > 0$ and $\tan \theta < 0$.

Step 1. Try to find the sign of $\cos \theta$ and $\sin \theta$.

We already have the sign for $\cos \theta$. Now look at Formula (4) which relates $\cos \theta$, $\sin \theta$ and $\tan \theta$:

$$\tan \theta = \frac{\sin \theta}{\cos \theta} \tag{8}$$

We see that $\sin \theta = \tan \theta \cos \theta < 0$.

Step 2. Now we know that θ belongs to a quadrant of x > 0, y < 0. This is quadrant IV.

Given one trigonometric function and the quadrant of θ . 4 Find other trigonometric functions

If you are given one trigonometric function and the quadrant of θ , and asked to find other trigonometric functions, you can follow the following steps :

- 1) Look at the quadrant of θ to determine the sign of $\cos \theta$ and $\sin \theta$.
- 2) Determine $\cos\theta$ and $\sin\theta$. How? If you are given either $\cos\theta$ or $\sin\theta$, you can use Formula (1) to determine the other. If you are given $\tan \theta$, you can use Formula (2) to find $\cos \theta$ and then use Formula (1) to find $\sin \theta$.
- **3)** Use the formulas (1)-(4) to find other trigonometric functions.

 $\underline{\text{Ex 4}}$ (Problem 43, page 390)

Here we are given $\sin \theta = \frac{12}{13}$ and θ is in quadrant II. **Step 1.** Look at the coordinate system, we see that quadrant II corresponds to x < 0, y > 0. Hence, $\cos \theta < 0$ and $\sin \theta > 0$.

Step 2. We are already given $\sin \theta = \frac{12}{13}$. Thus, we will use Formula (1) to find $\cos \theta$. We have

$$\cos^2 \theta = 1 - \sin^2 \theta = 1 - \left(\frac{12}{13}\right)^2 = \frac{25}{169}$$

Because $\cos \theta < 0$, we get

$$\cos \theta = -\sqrt{\frac{25}{169}} = -\frac{5}{13}$$

Step 3. Now we use formulas (1)-(4) to compute other trigonometric functions :

$$\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{12}{13} \frac{13}{-5} = -\frac{12}{5}$$
$$\cot \theta = \frac{1}{\tan \theta} = -\frac{5}{12}$$
$$\sec \theta = \frac{1}{\cos \theta} = -\frac{13}{5}$$
$$\csc \theta = \frac{1}{\sin \theta} = \frac{13}{12}$$

5 Use even-odd properties to avoid negative angles

If you are asked to find a trigonometric function of a negative angle, and you dislike negative angles, you can use the even-odd properties to avoid it. What you need to memorize is that : Only $\cos \theta$ and $\sec \theta$ are even. The other 4 tringonometric functions are odd.

 $\underline{\text{Ex 5}}$ (Problem 61, page 391)

We know that $\tan \theta$ is an odd function. Therefore,

$$\tan(-30^0) = -\tan(30^0) = -\frac{\sqrt{3}}{3}$$