Main points in Sections 7.1 and 7.2

TA: Tuan Pham

Updated October 1, 2012

Contents

- 1 What to remember ?
- 2 Compute $\cos^{-1} x$, $\sin^{-1} x$ and $\tan^{-1} x$
- **3** Compute $\sec^{-1} x$, $\csc^{-1} x$ and $\cot^{-1} x$
- 4 Write a trigonometric expression as an algebraic expression

1 What to remember ?

In these sections, we learn the inverse functions of the 6 trigonometric functions. They are $\cos^{-1} x$, $\sin^{-1} x$, $\tan^{-1} x$, $\cot^{-1} x$, $\sec^{-1} x$, and $\csc^{-1} x$. All what we need to remember is the domain and range of $\cos^{-1} x$, $\sin^{-1} x$, and $\tan^{-1} x$ in the following chart. The graphs below can give you more intuition about these three functions and help you remember the chart.

<i>y</i>	Domain	Range
$\cos^{-1}x$	$-1 \le x \le 1$	$0 \le y \le \pi$
$\sin^{-1}x$	$-1 \le x \le 1$	$-\frac{\pi}{2} \le y \le \frac{\pi}{2}$
$\tan^{-1}x$	All real numbers	$-\frac{\pi}{2} < y < \frac{\pi}{2}$

2 Compute $\cos^{-1} x$, $\sin^{-1} x$ and $\tan^{-1} x$

If you want to find the exact values of these functions, you can follow the following steps :

- 1) Put $\theta = \cos^{-1} x$ (respectively $\sin^{-1} x$ or $\tan^{-1} x$). And we are finding the angle θ such that $\cos \theta = x$ (respectively $\sin \theta = x$ or $\tan \theta = x$).
- 2) Write down the range for θ by looking at the chart.

Figure 1: Inverse cosine

Figure 2: Inverse sine

3) Find θ by using the chart of common values of trigonometric functions.

θ	$\sin \theta$	$\cos \theta$
0	0	1
$\frac{\pi}{6}$	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$
$ \begin{array}{c} \frac{\pi}{6} \\ \frac{\pi}{3} \\ \frac{\pi}{4} \\ \frac{\pi}{2} \end{array} $	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{2}}{2}$
$\frac{\pi}{2}$	1	0

It is useful to remind yourself that $\sin \theta$ and $\tan \theta$ are odd functions, while $\cos \theta$ is even. One more property of $\cos \theta$ that you will learn later is $\cos(\theta) = -\cos(\pi - \theta)$. That is, two supplementary angles have cosines of opposite signs.

Ex 1 (Problem 19, page 446) We are to find $\sin^{-1} \frac{\sqrt{2}}{2}$. Step 1. Put $\theta = \sin^{-1} \frac{\sqrt{2}}{2}$. We are going to find the angle θ such that $\sin \theta = \frac{\sqrt{2}}{2}$. Step 2. Since we are given the inverse sine, the range of θ is $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$. Step 3. By using the chart of common values, we find $\theta = \frac{\pi}{4}$. Ex 2 (Problem 23, page 446) We are to find $\cos^{-1} \left(-\frac{\sqrt{3}}{2}\right)$.

Figure 3: Inverse tangent

Step 1. Put $\theta = \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)$. We are going to find the angle θ such that $\cos \theta = -\frac{\sqrt{3}}{2}$. Step 2. Since we are given the inverse cosine, the range of θ is $0 \le \theta \le \pi$.

Step 3. Unfortunately, we do not see in the chart of common values any angle whose cosine is $\frac{\sqrt{3}}{2}$. However, we see that $\cos \frac{\pi}{6} = \frac{\sqrt{3}}{2}$. Thus, the supplementary angle of $\frac{\pi}{6}$ will have cosine equal $-\frac{\sqrt{3}}{2}$. Therefore,

$$\theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6}$$

 $\underline{\text{Ex 3}}$ (Problem 37, page 446)

We are to find $\cos^{-1}\left(\cos\frac{4\pi}{5}\right)$. **Step 1.** Put $\theta = \cos^{-1}\left(\cos\frac{4\pi}{5}\right)$. We are going to find the angle θ such that $\cos\theta = \cos\frac{4\pi}{5}.$

Step 2. Since we are given the inverse cosine, the range of θ is $0 \le \theta \le \pi$.

Step 3. Since $\frac{4\pi}{5}$ is already in the range, we can pick $\theta = \frac{4\pi}{5}$.

 $\underline{\text{Ex 4}}$ (Problem 41, page 446)

We are to find $\sin^{-1}\left(\sin\frac{9\pi}{8}\right)$. **Step 1.** Put $\theta = \sin^{-1}\left(\sin\frac{9\pi}{8}\right)$. We are going to find the angle θ such that $\sin \theta = \sin \frac{9\pi}{8}$.

Step 2. Since we are given the inverse sine, the range of θ is $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$. **Step 3.** Here we cannot pick $\theta = \frac{9\pi}{8}$ because $\frac{9\pi}{8}$ exceeds $\frac{\pi}{2}$. Now look at the unit circle, we see that the angle between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$ that has the same y is $-\frac{\pi}{8}$. Therefore, $\theta = -\frac{\pi}{8}$.

 $\underline{\text{Ex 5}}$ (Problem 45, page 446)

We are to find $\sin\left(\sin^{-1}\frac{1}{4}\right)$.

Put $\theta = \sin^{-1} \frac{1}{4}$. We are going to $\sin \theta$. By the definition of θ , we already have $\sin \theta = \frac{1}{4}.$

Compute $\sec^{-1} x$, $\csc^{-1} x$ and $\cot^{-1} x$ 3

If you are asked to find these inverse functions, the first step is the same as mentioned above; the second step is to convert everything to cosine, sine or tangent.

Figure 4: Inverse tangent

Then we return to the problem of finding inverse cosine, sine, and tangent. Ex 6 (Problem 45, page 453)

We are to find $\sec^{-1} 4$.

Put $\theta = \sec^{-1} 4$. We are going to find the angle θ such that $\sec \theta = 4$. That is $\frac{1}{\cos \theta} = 4$. Thus, $\cos \theta = \frac{1}{4}$. Since $\frac{1}{4}$ is not a value in the chart of common values, we have to use a calculator. Pressing $\cos^{-1} 4$ gives us 1.32

4 Write a trigonometric expression as an algebraic expression

If you are asked to find these inverse functions, the first step is always to denote the inverse function by θ . Let's look at an example.

 $\underline{\text{Ex } 7}$ (Problem 61, page 453)

We are to express the expression $\sin(\sec^{-1} u)$ as an algebraic expression in u. **Step 1.** Put $\theta = \sec^{-1} u$. The given expression is $\sin \theta$. We know that $\sec \theta = u$, or $\frac{1}{\cos \theta} = u$. Thus $\cos \theta = \frac{1}{u}$.

Step 2. Since we are given the cosine of θ , the range of θ is $0 \le \theta \le \pi$. **Step 3.** Because $\sin \theta > 0$ in the above range, we have

$$\sin\theta = \sqrt{1 - \cos^2\theta} = \sqrt{1 - \frac{1}{u^2}}$$