Main points in Sections 7.5 and 7.6

TA: Tuan Pham

Updated October 15, 2012

Contents

1 What to remember in Section 7.5?

2 Find trigonometric functions of a weird angle

3 Some mixed problems in Section 7.5

4 What to remember in Section 7.6?

1 What to remember in Section 7.5?

We need to memorize at least 3 following identities:

$$
\begin{equation*}
\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta \tag{2}\\
\tan (\alpha+\beta)=\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta} \tag{3}
\end{gather*}
$$

From them, we can deduce the formulas for $\cos (\alpha-\beta), \sin (\alpha-\beta)$ and $\tan (\alpha-\beta)$. For example, to get $\cos (\alpha-\beta)$, we will replace β in (1) by $-\beta$. On the right hand side we will have $\cos (-\beta)$ and $\sin (-\beta)$. Because cosine is even and sine is odd, $\cos (-\beta)=\cos \beta$ and $\sin (-\beta)=-\sin \beta$. Then (1) gives us

$$
\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta
$$

As a consequence, for any two complementary angles, sine, cosine, tangent of one angle is equal to cosine, sine, cotangent of the other angle respectively. For example, because $30^{\circ}+60^{\circ}=90^{\circ}$, we have

$$
\sin 30^{\circ}=\cos 60^{\circ}, \quad \cos 30^{\circ}=\sin 60^{\circ}, \quad \tan 30^{\circ}=\cot 60^{\circ} .
$$

2 Find trigonometric functions of a weird angle

When you are supposed to find the trigonometric functions of given an angle that is not $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}$ or $\frac{\pi}{2}$, you can follow the following steps :

1. Convert the given function into sine, cosine or tangent.
2. Express θ as a sum or difference of two familiar angles.
3. Apply Equations (1), (2) or (3).

Ex 1 (Problem 17, page 481)

We need to compute $\tan 15^{\circ}$. First, we see that the function is already tangent. Second, we see $15^{0}=45^{0}-30^{0}$. Thus we will use Eq. (3) with $\alpha=45^{\circ}$ and $\beta=-30^{\circ}$. We have

$$
\tan 15^{\circ}=\tan \left(45^{\circ}+\left(-30^{\circ}\right)\right)=\frac{\tan 45^{0}+\tan \left(-30^{\circ}\right)}{1-\tan 45^{\circ} \tan \left(-30^{\circ}\right)}
$$

We know that $\tan 45^{\circ}=1$. Because tangent is odd, we have $\tan \left(-30^{\circ}\right)=$ $-\tan \left(30^{\circ}\right)=-\frac{\sqrt{3}}{3}$. Substituting these values into the above expression, we get $\tan 15^{\circ}=2-\sqrt{3}$.

3 Some mixed problems in Section 7.5

Ex 2 (Problem 37, page 481)

$$
\sin \alpha=\frac{5}{13}, \quad-\frac{3 \pi}{2}<\alpha<-\pi ; \quad \tan \beta=-\sqrt{3}, \frac{\pi}{2}<\beta<\pi
$$

(a) Compute $\sin (\alpha+\beta)$:

By Eq. (1), we have

$$
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta
$$

Thus we need to compute $\cos \alpha, \sin \beta$ and $\cos \beta$. We have

$$
\cos ^{2} \alpha=1-\sin ^{2} \alpha=1-\left(\frac{5}{13}\right)^{2}=\frac{144}{169}
$$

Because $-\frac{3 \pi}{2}<\alpha<-\pi$, it belongs to the third quadrant. Hence, $\cos \alpha<0$ and

$$
\cos \alpha=-\sqrt{\frac{144}{169}}=-\frac{12}{13} .
$$

Next we will compute $\sin \beta$ and $\cos \beta$. We have

$$
\cos ^{2} \beta=\frac{1}{1+\tan ^{2} \beta}=\frac{1}{1+(-\sqrt{3})^{2}}=\frac{1}{4}
$$

Because $\frac{\pi}{2}<\beta<\pi$, it belongs to the second quadrant. Thus, $\cos \beta<0$ and

$$
\cos \beta=-\sqrt{\frac{1}{4}}=-\frac{1}{2}
$$

We know $\tan \beta=\frac{\sin \beta}{\cos \beta}$. Thus,

$$
\sin \beta=\cos \beta \tan \beta=\left(-\frac{1}{2}\right)(-\sqrt{3})=\frac{\sqrt{3}}{2}
$$

Now that we have $\sin \alpha, \cos \alpha, \sin \beta$ and $\cos \beta$, we have

$$
\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta=\frac{5}{13}\left(-\frac{1}{2}\right)+\left(-\frac{12}{13}\right) \frac{\sqrt{3}}{2}=\frac{-5-12 \sqrt{3}}{26}
$$

Doing similarly to Parts (b), (c) and (d), we have
(b)

$$
\cos (\alpha+\beta)=\frac{12-5 \sqrt{3}}{26}
$$

(c)

$$
\sin (\alpha-\beta)=\frac{-5+12 \sqrt{3}}{26}
$$

(d)

$$
\tan (\alpha-\beta)=\frac{-240+169 \sqrt{3}}{69}
$$

4 What to remember in Section 7.6?

There are 3 important identities:

$$
\begin{equation*}
\sin 2 \theta=2 \sin \theta \cos \theta \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
\cos 2 \theta=2 \cos ^{2} \theta-1=1-2 \sin ^{2} \theta \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\tan 2 \theta=\frac{1-\cos 2 \theta}{1+\cos 2 \theta} \tag{6}
\end{equation*}
$$

From these formulas, we can deduce other identities in the textbook. For example, from (5) we have $\cos 2 \theta=2 \cos ^{2} \theta-1$. Adding 1 to both sides, we get $1+\cos 2 \theta=$ $2 \cos ^{2} \theta$. Dividing both sides by 2 , we get $\frac{1+\cos 2 \theta}{2}=\cos ^{2} \theta$, or

$$
\cos ^{2} \theta=\frac{1+\cos 2 \theta}{2}
$$

Putting $x=2 \theta$, we get

$$
\cos ^{2} \frac{x}{2}=\frac{1+\cos x}{2}
$$

This is the half-angle formula for cosine.
Ex 3 (Problem 11, page 491)

$$
\cos \theta=-\frac{\sqrt{6}}{3}, \quad \frac{\pi}{2}<\theta<\pi
$$

(a) By Eq. (4) we have $\sin 2 \theta=2 \sin \theta \cos \theta$. Thus, we need to compute $\sin \theta$ first. We have

$$
\sin ^{2} \theta=1-\cos ^{2} \theta=1-\left(-\frac{\sqrt{6}}{3}\right)^{2}=1-\frac{6}{9}=\frac{3}{9}=\frac{1}{3}
$$

Because $\frac{\pi}{2}<\theta<\pi$, it belongs to the second quadrant. Thus, $\sin \theta>0$ and

$$
\sin \theta=\frac{1}{\sqrt{3}}=\frac{\sqrt{3}}{3}
$$

Hence

$$
\sin 2 \theta=2 \sin \theta \cos \theta=2 \frac{\sqrt{3}}{3}\left(-\frac{\sqrt{6}}{3}\right)=-2 \frac{\sqrt{18}}{9}=-2 \frac{3 \sqrt{2}}{9}=-\frac{2 \sqrt{2}}{3}
$$

(b)

$$
\cos 2 \theta=1-2 \sin ^{2} \theta=1-2\left(\frac{1}{\sqrt{3}}\right)^{2}=1-\frac{2}{3}=\frac{1}{3}
$$

(c)

$$
\sin ^{2} \frac{\theta}{2}=\frac{1-\cos \theta}{2}=\frac{1+\frac{\sqrt{6}}{3}}{2}=\frac{\frac{3+\sqrt{6}}{3}}{2}=\frac{3-\sqrt{6}}{3} \times \frac{1}{2}=\frac{3+\sqrt{6}}{6}
$$

Because $\frac{\pi}{2}<\theta<\pi$, we have $\frac{\pi}{4}<\frac{\theta}{2}<\frac{\pi}{2}$. That means $\frac{\theta}{2}$ belongs to the first quadrant. Thus, $\sin \frac{\theta}{2}>0$ and

$$
\sin \frac{\theta}{2}=\sqrt{\frac{3+\sqrt{6}}{6}}
$$

(d)

$$
\cos ^{2} \frac{\theta}{2}=\frac{1+\cos \theta}{2}=\frac{1-\frac{\sqrt{6}}{3}}{2}=\frac{\frac{3-\sqrt{6}}{3}}{2}=\frac{3-\sqrt{6}}{3} \times \frac{1}{2}=\frac{3-\sqrt{6}}{6}
$$

Because $\frac{\theta}{2}$ belongs to the first quadrant, $\cos \frac{\theta}{2}>0$. Thus

$$
\cos \frac{\theta}{2}=\sqrt{\frac{3-\sqrt{6}}{6}}
$$

