Main points in Sections 7.5 and 7.6

TA: Tuan Pham

Updated October 15, 2012

Contents

- 1 What to remember in Section 7.5?
- 2 Find trigonometric functions of a weird angle
- 3 Some mixed problems in Section 7.5
- 4 What to remember in Section 7.6?

1 What to remember in Section 7.5?

We need to memorize at least 3 following identities :

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$
(1)

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$
(2)

$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$
(3)

From them, we can deduce the formulas for $\cos(\alpha - \beta)$, $\sin(\alpha - \beta)$ and $\tan(\alpha - \beta)$. For example, to get $\cos(\alpha - \beta)$, we will replace β in (1) by $-\beta$. On the right hand side we will have $\cos(-\beta)$ and $\sin(-\beta)$. Because cosine is even and sine is odd, $\cos(-\beta) = \cos\beta$ and $\sin(-\beta) = -\sin\beta$. Then (1) gives us

$$\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta.$$

As a consequence, for any two complementary angles, sine, cosine, tangent of one angle is equal to cosine, sine, cotangent of the other angle respectively. For example, because $30^0 + 60^0 = 90^0$, we have

$$\sin 30^0 = \cos 60^0$$
, $\cos 30^0 = \sin 60^0$, $\tan 30^0 = \cot 60^0$.

2 Find trigonometric functions of a weird angle

When you are supposed to find the trigonometric functions of given an angle that is not 0, $\frac{\pi}{6}$, $\frac{\pi}{4}$, $\frac{\pi}{3}$ or $\frac{\pi}{2}$, you can follow the following steps :

- 1. Convert the given function into sine, cosine or tangent.
- 2. Express θ as a sum or difference of two familiar angles.
- 3. Apply Equations (1), (2) or (3).

$\underline{\text{Ex 1}}$ (Problem 17, page 481)

We need to compute $\tan 15^{\circ}$. First, we see that the function is already tangent. Second, we see $15^{\circ} = 45^{\circ} - 30^{\circ}$. Thus we will use Eq. (3) with $\alpha = 45^{\circ}$ and $\beta = -30^{\circ}$. We have

$$\tan 15^{0} = \tan(45^{0} + (-30^{0})) = \frac{\tan 45^{0} + \tan(-30^{0})}{1 - \tan 45^{0} \tan(-30^{0})}$$

We know that $\tan 45^0 = 1$. Because tangent is odd, we have $\tan(-30^0) = -\tan(30^0) = -\frac{\sqrt{3}}{3}$. Substituting these values into the above expression, we get $\tan 15^0 = 2 - \sqrt{3}$.

3 Some mixed problems in Section 7.5

 $\underline{\text{Ex } 2}$ (Problem 37, page 481)

$$\sin \alpha = \frac{5}{13}, \ -\frac{3\pi}{2} < \alpha < -\pi; \ \tan \beta = -\sqrt{3}, \ \frac{\pi}{2} < \beta < \pi.$$

(a) Compute $\sin(\alpha + \beta)$: By Eq. (1), we have

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$$

Thus we need to compute $\cos \alpha$, $\sin \beta$ and $\cos \beta$. We have

$$\cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \left(\frac{5}{13}\right)^2 = \frac{144}{169}$$

Because $-\frac{3\pi}{2} < \alpha < -\pi$, it belongs to the third quadrant. Hence, $\cos \alpha < 0$ and

$$\cos \alpha = -\sqrt{\frac{144}{169}} = -\frac{12}{13}$$

Next we will compute $\sin \beta$ and $\cos \beta$. We have

$$\cos^2\beta = \frac{1}{1 + \tan^2\beta} = \frac{1}{1 + (-\sqrt{3})^2} = \frac{1}{4}$$

Because $\frac{\pi}{2} < \beta < \pi$, it belongs to the second quadrant. Thus, $\cos \beta < 0$ and

$$\cos\beta = -\sqrt{\frac{1}{4}} = -\frac{1}{2}$$

We know $\tan \beta = \frac{\sin \beta}{\cos \beta}$. Thus,

$$\sin\beta = \cos\beta\tan\beta = \left(-\frac{1}{2}\right)\left(-\sqrt{3}\right) = \frac{\sqrt{3}}{2}$$

Now that we have $\sin \alpha$, $\cos \alpha$, $\sin \beta$ and $\cos \beta$, we have

$$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta = \frac{5}{13} \left(-\frac{1}{2} \right) + \left(-\frac{12}{13} \right) \frac{\sqrt{3}}{2} = \frac{-5 - 12\sqrt{3}}{26}$$

Doing similarly to Parts (b), (c) and (d), we have

(b)

$$\cos(\alpha + \beta) = \frac{12 - 5\sqrt{3}}{26}$$

(c) $\sin(\alpha - \beta) = \frac{-5 + 12\sqrt{3}}{26}$

(d)

$$\tan(\alpha - \beta) = \frac{-240 + 169\sqrt{3}}{69}$$

4 What to remember in Section 7.6?

There are 3 important identities :

$$\sin 2\theta = 2\sin\theta\cos\theta \tag{4}$$

$$\cos 2\theta = 2\cos^2\theta - 1 = 1 - 2\sin^2\theta \tag{5}$$

$$\tan 2\theta = \frac{1 - \cos 2\theta}{1 + \cos 2\theta} \tag{6}$$

From these formulas, we can deduce other identities in the textbook. For example, from (5) we have $\cos 2\theta = 2\cos^2\theta - 1$. Adding 1 to both sides, we get $1 + \cos 2\theta = 2\cos^2\theta$. Dividing both sides by 2, we get $\frac{1+\cos 2\theta}{2} = \cos^2\theta$, or

$$\cos^2\theta = \frac{1+\cos 2\theta}{2}.$$

Putting $x = 2\theta$, we get

$$\cos^2 \frac{x}{2} = \frac{1 + \cos x}{2}$$

This is the half-angle formula for cosine. Ex 3 (Problem 11, page 491)

$$\cos\theta = -\frac{\sqrt{6}}{3}, \quad \frac{\pi}{2} < \theta < \pi$$

(a) By Eq. (4) we have $\sin 2\theta = 2\sin\theta\cos\theta$. Thus, we need to compute $\sin\theta$ first. We have

$$\sin^2\theta = 1 - \cos^2\theta = 1 - \left(-\frac{\sqrt{6}}{3}\right)^2 = 1 - \frac{6}{9} = \frac{3}{9} = \frac{1}{3}$$

Because $\frac{\pi}{2} < \theta < \pi$, it belongs to the second quadrant. Thus, $\sin \theta > 0$ and

$$\sin\theta = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

Hence

$$\sin 2\theta = 2\sin\theta\cos\theta = 2\frac{\sqrt{3}}{3}\left(-\frac{\sqrt{6}}{3}\right) = -2\frac{\sqrt{18}}{9} = -2\frac{3\sqrt{2}}{9} = -\frac{2\sqrt{2}}{3}$$

(b)

$$\cos 2\theta = 1 - 2\sin^2\theta = 1 - 2\left(\frac{1}{\sqrt{3}}\right)^2 = 1 - \frac{2}{3} = \frac{1}{3}$$

(c)

$$\sin^2 \frac{\theta}{2} = \frac{1 - \cos \theta}{2} = \frac{1 + \frac{\sqrt{6}}{3}}{2} = \frac{\frac{3 + \sqrt{6}}{3}}{2} = \frac{3 - \sqrt{6}}{3} \times \frac{1}{2} = \frac{3 + \sqrt{6}}{6}$$

Because $\frac{\pi}{2} < \theta < \pi$, we have $\frac{\pi}{4} < \frac{\theta}{2} < \frac{\pi}{2}$. That means $\frac{\theta}{2}$ belongs to the first quadrant. Thus, $\sin \frac{\theta}{2} > 0$ and

$$\sin\frac{\theta}{2} = \sqrt{\frac{3+\sqrt{6}}{6}}$$

(d)

$$\cos^2 \frac{\theta}{2} = \frac{1 + \cos \theta}{2} = \frac{1 - \frac{\sqrt{6}}{3}}{2} = \frac{\frac{3 - \sqrt{6}}{3}}{2} = \frac{3 - \sqrt{6}}{3} \times \frac{1}{2} = \frac{3 - \sqrt{6}}{6}$$

Because $\frac{\theta}{2}$ belongs to the first quadrant, $\cos \frac{\theta}{2} > 0$. Thus

$$\cos\frac{\theta}{2} = \sqrt{\frac{3-\sqrt{6}}{6}}$$