Please show all necessary work completely and clearly.
(1) (7 Points) Determine whether the function $y(x)=x e^{x}$ is a solution to the initial value problem

$$
y^{\prime}(x)-y(x)=e^{x}, \quad y(0)=0
$$

Answer: Yes. We have that $y^{\prime}(x)=e^{x}+x e^{x}$ and therefore $y^{\prime}(x)-y(x)=\left[e^{x}+x e^{x}\right]-x e^{x}=e^{x}$, so the differential equation is satisfied.

We also have to check the initial condition $y(0)=0$. Indeed, $y(0)=0 * e^{0}=0$.
2 points for any work
2 points for computing y^{\prime}
2 points for comparing $y^{\prime}-y$ to e^{x}
1 point for checking the initial condition

7 points total
(2) (3 Points) Suppose $y(x)$ is a solution to the differential equation

$$
\frac{d y}{d x}=x^{2}+x y+y^{2} .
$$

If the point $(1,-1)$ is on the graph of $y(x)$, then what is $y^{\prime}(1)$?
Answer: We have to evaluate $\frac{d y}{d x}$ at $(x, y)=(1,-1)$. We have $\frac{d y}{d x}=x^{2}+x y+y^{2}=1^{2}+1(-1)+(-1)^{2}=1-1+1=\mathbf{1}$.
1 point for any work
1 point for plugging $(1,-1)$ into $x^{2}+x y+y^{2}$
1 point for correct answer

3 points total

