(1) (5 points) A certain city had a population of 20,000 in 1980 and a population of 25,000 in 1990. Assume that its population will continue to grow exponentially at a constant rate. What population can its city planners can expect in year 2000? (Do not simplify your answer!)
(1 point) any work.
(1 point) writing the equation or solution form $\left(P^{\prime}=k P\right.$ or $\left.P=P_{0} e^{k t}\right)$.
(1 point) finding $k=\ln (25.000 / 20.000) / 10$.
(1 point) $P(t)=20.000 e^{\frac{\ln (25.000 / 20.000)}{10} t}$
(1 point) $P(20)=20.000 e^{\frac{\ln (25.000 / 20.000)}{10} 20}$
Note; Simplification is not requires, so if they make any mistake while trying to simplify, lets do not deduct any point!
(2) (5 points) Find a general solution of the differential equation, $y^{\prime}+3 y=2 x e^{-3 x}$. (1 point) any work.
(1 point) recognizing that it is linear.
(1 point) computing $e^{\int 3 d x}=e^{3 x}$ and writing $y^{\prime} e^{3 x}+3 y e^{3 x}=2 x e^{-3 x} e^{3 x}$
(1 point) $\left(y e^{3 x}\right)^{\prime}=\int 2 x d x$
(1 point) $y=\frac{x^{2}+C}{e^{3 X}}$.

