(1) (7 points) Given the following autonomous differential equation

$$
\frac{d x}{d t}=x^{2}\left(x^{2}-1\right)
$$

Find all critical points. Draw the phase diagram and indicate whether each critical point is stable or unstable.

- Factor the right hand side: 1 point

$$
x^{2}(x-1)(x+1)
$$

- Get correct critical points: 1 point

$$
c=-1,0,1
$$

- Draw correct arrows: 2 points

- Indicate correctly stability/unstability: 3 points (1 point for each critical point).
(2) (3 points) Given the following initial value problem

$$
\frac{d y}{d x}=x \cos (y), y(0)=1
$$

Write the iterative formula of Euler's method and the initial point. (You can denote the step size by h.)

Correct answer: get full credit.

$$
y_{n+1}=y_{n}+h x_{n} \cos \left(y_{n}\right), x_{0}=0, y_{0}=1
$$

If not, get partial credit as follows.

- Being able to write $x_{0}=0, y_{0}=1: 1$ point
- Being able to write the left hand side as $\frac{y_{n+1}-y_{n}}{h}: 2$ points

