Please show all necessary work completely and clearly.
(1) (5 Points) Show that $y(x)=1, y(x)=e^{-x}$, and $y(x)=e^{2 x}$ are linearly independent functions.

Answer: We compute the Wronskian of the three functions, which is the determinant of the following matrix:

$$
\left(\begin{array}{ccc}
1 & e^{-x} & e^{2 x} \\
0 & -e^{-x} & 2 e^{2 x} \\
0 & e^{-x} & 4 e^{2 x}
\end{array}\right)
$$

The determinant should equal $-6 e^{x}$, which students should recognize is not the zero function. Therefore, the functions are linearly independent.

Give $3 / 5$ or $4 / 5$ points for those who use the correct method but have algebra mistakes, either in calculating the derivatives or calculating the determinant.

Students may also attempt an argument beginning with "Suppose $c_{1}(1)+c_{2}\left(e^{-x}\right)+c_{3}\left(e^{2 x}\right)=0$." Probably they will not get far with this, but give 1 or 2 points in this case.

I think as far as partial credit goes, these will be most of the cases.
(2) (5 Points) Find the general solution to the differential equation

$$
y^{\prime \prime \prime}-y^{\prime \prime}-2 y^{\prime}=0
$$

Answer: $c_{1}+c_{2} e^{-x}+c_{3} e^{2 x}$.
One approach is to recognize that the three functions in problem 1 are solutions. Since they are linearly independent, and there are three of them for a degree 3 differential equation, then the general solution is $c_{1}+c_{2} e^{-x}+c_{3} e^{2 x}$.

A student may check that the three functions are solutions but not make a conclusion about the general solution. $3 / 5$ for this.

A second method is via the characteristic equation $\lambda^{3}-\lambda^{2}-2 \lambda=0$. The solutions to this are $\lambda=0,-1,2$, which correspond to the solutions $y=1, y=e^{-x}, y=e^{2 x}$. Thus the general solution is $c_{1}+c_{2} e^{-x}+c_{3} e^{2 x}$. In this case:

2 points for writing down the characteristic equation
1 point for getting the correct roots
1 point for recognizing the solutions $1, e^{-x}, e^{2 x}$
1 point for correct general solution

