(1) (5 Points) Set up an appropriate particular solution y_{p}, for the differential equation,

$$
y^{(3)}-y^{\prime \prime}-12 y^{\prime}=x-2 x e^{-3 x}
$$

which have complementary function given by;

$$
y_{c}=C_{1}+C_{2} e^{-3 x}+C_{3} e^{4 x}
$$

(Do not determine the values of coefficients).

- (1pt.) Any work
- (2 pt.) Initial guess is true; $(A+B x)+(C+D x) e^{-3 x}$
- (2pt.) Multiplying by x and saying $y_{p}=x \cdot(A+B x)+x \cdot(C+D x) e^{-3 x}$
(if student forgets to multiply two of those terms by x, consider giving 1 partial credit for this case)
(2) (5 Points) Solve the initial value problem;

$$
y^{\prime \prime}+4 y=2 x ; \quad y(0)=1, y^{\prime}(0)=2
$$

whose particular solution is given by;

$$
y_{p}=\frac{x}{2} .
$$

- (2 pt.) Finding $y_{c}=c_{1} \cos 2 x+c_{2} \sin 2 x$
- (1 pt.) Saying $y_{g}=c_{1} \cos 2 x+c_{2} \sin 2 x+x / 2$
- (2 pt.) Computing $c_{1}=1$ and $c_{2}=3 / 4$ (for each small algebra mistakes, if the rest of it true, you can deduct 1 pt)

