Find general solutions of the following system. The eigenvalues of the coefficient matrix A are given.

$$
\vec{x}^{\prime}=\left[\begin{array}{ccc}
2 & 0 & 0 \\
-7 & 9 & 7 \\
0 & 0 & 2
\end{array}\right] \vec{x}, \quad \lambda=2,2,9
$$

(3 points) Find two eigenvectors for $\lambda=2$. For example,

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

Give at least 1 point if the student shows effort to solve a linear system.
(3 points) Find an eigenvector for $\lambda=1$. For example,

$$
\vec{v}_{3}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Give at least 1 point if the student shows effort to solve a linear system.
(3 points) Get 1 point for each correct function

$$
\vec{x}_{1}(t)=e^{2 t} \vec{v}_{1}, \vec{x}_{2}(t)=e^{2 t} \vec{v}_{2}, \vec{x}_{3}(t)=e^{9 t} \vec{v}_{3}
$$

Give at least 2 points if the answers are wrong but the forms are correct.
(1 point) Get $\vec{x}(t)=c_{1} \vec{x}_{1}(t)+c_{2} \vec{x}_{2}(t)+c_{3} \vec{x}_{3}(t)$

