Quiz 1

1. Evaluate the following limits. If a limit does not exist, write DNE, ∞ or $-\infty$ based on your best estimate. You do NOT need to explain your answers.
(a)

$$
\lim _{x \rightarrow 1}\left(x^{3}-x^{2}+2\right)
$$

(b)

$$
\lim _{x \rightarrow 1} \frac{1}{x+1}
$$

(c)

$$
\lim _{x \rightarrow 0^{-}} \frac{1}{x(x+1)}
$$

2. Evaluate the following limit (and show your work!)

$$
\lim _{h \rightarrow 0} \frac{\sqrt{1+h}-1}{h}
$$

1.

$$
\begin{aligned}
\lim _{x \rightarrow 1}\left(x^{3}-x^{2}+2\right) & =\lim _{x \rightarrow 1} x^{3}-\lim _{x \rightarrow 1} x^{2}+\lim _{x \rightarrow 1} 2 \\
& =1^{3}-1^{2}+2 \\
& =2
\end{aligned}
$$

(b) $\lim _{x \rightarrow 1} \frac{1}{x+1}=\frac{1}{\lim _{x \rightarrow 1} x+1}=\frac{1}{1+1}=\frac{1}{2}$
(c) $\lim _{x \rightarrow 0^{-}} \frac{1}{x(x+1)}=-\infty$
because $x(x+1)<0$ as x approaches 0 from the leet and $x(x+1)$ is close to $O(0+1)=0$.

$$
\begin{aligned}
& \text { 2. } \quad \begin{aligned}
& \frac{\sqrt{1+h}-1}{h}=\frac{(\sqrt{1+h}-1)(\sqrt{1+h}+1)}{h(\sqrt{1+h}+1)}=\frac{(1+h)-1}{h(\sqrt{1+h}+1)} \\
&=\frac{h}{h(\sqrt{1+h}+1)} \\
&=\frac{1}{\sqrt{1+h}+1} \\
& \lim _{h \rightarrow 0} \frac{\sqrt{1+h}-1}{h}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{1+h}+1}=\frac{1}{\sqrt{1+0}+1}=\frac{1}{2}
\end{aligned}
\end{aligned}
$$

