Quiz 1

1. Evaluate the following limits. If a limit does not exist, write DNE, ∞ or $-\infty$ based on your best estimate. You do NOT need to explain your answers.

(a) $\lim_{x \to 1} (x^3 - x^2 + 2)$

 $\lim_{x \to 1} \frac{1}{x+1}$

 $\lim_{x \to 0^-} \frac{1}{x(x+1)}$

2. Evaluate the following limit (and show your work!)

$$\lim_{h \to 0} \frac{\sqrt{1+h} - 1}{h}$$

1. (a)
$$\lim_{x \to 1} (x^3 - x^2 + 2) = \lim_{x \to 1} x^3 - \lim_{x \to 1} x^2 + \lim_{x \to 1} 2$$

$$= 1^3 - 1^2 + 2$$

$$= 2$$
(b) $\lim_{x \to 1} \frac{1}{x + 1} = \frac{1}{\lim_{x \to 1} x + 1} = \frac{1}{1 + 1} = \frac{1}{2}$
(c) $\lim_{x \to 0} \frac{1}{x(2 + 1)} = -\infty$

$$\lim_{x \to 0} \frac{1}{x(2 + 1)} = -\infty$$
because $x(x + 1) < 0$ as x approaches $x = 0$ from the left and $x(x + 1)$ is close to $x = 0$.

2. (3pl) $\lim_{x \to 0} \frac{1}{x(2 + 1)} = \frac{1}{h(1 + h + 1)} = \frac{h(1 + h) - 1}{h(1 + h + 1)} = \frac{h}{h(1 + h + 1)}$

$$= \frac{h}{h(1 + h + 1)}$$

$$= \frac{1}{h(1 + h + 1)} = \frac{1}{h(1 + h + 1)} = \frac{1}{h(1 + h + 1)}$$

$$= \frac{1}{h(1 + h + 1)} = \frac{1}{h(1 + h + 1)} = \frac{1}{h(1 + h + 1)}$$

$$= \frac{1}{h(1 + h + 1)} = \frac{1}{h(1 + h + 1)} = \frac{1}{h(1 + h + 1)}$$