Quiz 10

1. Sketch the region enclosed by the curves $y=x^{2}$ and $y=2 x$. Then find the area of the region.
2. Let r and h be positive numbers. Find the volume of the solid obtained by rotating the region bounded by the curves $x=r\left(1-\frac{y}{h}\right), y=0, x=0$ about the y-axis. (Note: This is a way to derive the volume of a cone of altitude h and radius r.)
(1)

At the intersection point:

$$
x^{2}=2 x \quad \Rightarrow x=0 \text { or } 2
$$

The area of the region is

$$
\int_{0}^{2}\left(2 x-x^{2}\right) d x=\left(x^{2}-\frac{x^{3}}{3}\right)_{0}^{2}=\frac{4}{3}
$$

(2)

Approximate the region by horizontal rectangles. The flat cylinder obtained by rotating each rectangle about they y-axis hiss volume

$$
W(y)=\pi x^{2} \Delta y=\pi\left[r\left(1-\frac{y}{h}\right)\right]^{2} \Delta y
$$

Summing all these volumes and letting $4 y \rightarrow 0$,

$$
\text { Volume }=\int_{0}^{h} \pi\left[r\left(1-\frac{y}{h}\right)^{2}\right]^{2} d y
$$

Put $u=1-\frac{y}{h}$. Then $d u=-\frac{1}{h} d y$, or $\quad d y=-h d u$.

$$
\text { Volume }=\int_{1}^{0} \pi(u)^{2}(-h) d g e=\pi r^{2} h \int_{0}^{1} u^{2} d y c=\frac{\pi r^{2} h}{3} .
$$

