Quiz 11

1. Find the volume of the solid obtained by rotating the region bounded by the curves $y=x^{3 / 2}$, $y=8, x=0$ about the x-axis.
(1)

Approximating the region by vertical rectangles. The flat annulus obtained by rotating each rectangle about the x-anis has Volume

$$
\begin{aligned}
\forall(x)=\pi\left(r_{2}^{2}-r_{1}^{2}\right) \Delta x & =\pi\left(8^{2}-\left(x^{\frac{3}{2}}\right)^{2}\right) \Delta x \\
& =\pi\left(64-x^{2}\right) \Delta x .
\end{aligned}
$$

Summing all these volumes and letting $\Delta x \rightarrow 0$,

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{4} \pi\left(64-x^{3}\right) d x \\
& =\pi\left(64 x-\frac{x^{4}}{4}\right)_{0}^{4} \\
= & 192 \pi
\end{aligned}
$$

