Quiz 2

1. At what points is $f(x)$ continuous? Explain why.

$$
f(x)= \begin{cases}x+2 & \text { if } x<0 \\ e^{x} & \text { if } 0 \leq x \leq 1 \\ 2-x & \text { if } x>1\end{cases}
$$

2. Find the following limits (support your answers with calculation)
(a)

$$
\lim _{x \rightarrow \infty} \frac{2 x^{2}}{3 x^{2}+x+1}
$$

(b)

$$
\lim _{x \rightarrow \infty} \frac{x}{x^{2}+1}
$$

(1) $f(x)$ is continuous at every point in $(-\infty, 0) \cup(0,1) \cup(1, \infty)$. Now check whether $f(x)$ is continuous at 0 and 1 .

$$
\left.\begin{array}{l}
\left.\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(x+2)=0+2=2\right\} \Rightarrow \lim _{x \rightarrow 0} f(x) \text { DNE } \\
\lim _{x \rightarrow 0^{+}} f(x)=e^{0}=1 \\
\lim _{x \rightarrow 0} e^{x} f(x)=\lim _{x \rightarrow 1^{-}} e^{x}=e^{\prime}=e \\
\left.\lim _{x \rightarrow 1^{-}}\right\} \Rightarrow \lim _{x \rightarrow 1^{-}} f(x) \text { DNE } \\
\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(2-x)=2-1=1
\end{array}\right\}
$$

Thus, $f(x)$ is discontinuous at 0 and 1 . We conclude that all the points at which f is continuous are

$$
(-\infty, 0) \cup(0,1) \cup(1, \infty)
$$

(2) (a) $\lim _{x \rightarrow \infty} \frac{2 x^{2}}{3 x^{2}+x+1}=\lim _{x \rightarrow \infty} \frac{2}{3+\frac{1}{x}+\frac{1}{x^{2}}}=\frac{2}{3+0+0}=\frac{2}{3}$
(b) $\lim _{x \rightarrow \infty} \frac{x}{x^{2}+1}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1+\frac{1}{x^{2}}}=\frac{0}{1+0}=0$.

