Quiz 4

1. Differentiate
(a) $y=\ln \left(x^{2}+1\right)$
(b) $y=\ln (\ln x)$
2. Find $d y / d x$ and $d x / d y$ by implicit differentiation

$$
y \cos x=x^{2}+y^{2}
$$

1) (a)

$$
\begin{aligned}
& y=\ln \left(x^{2}+1\right) \\
& y^{\prime}=\frac{\left(x^{2}+1\right)^{\prime}}{x^{2}+1}=\frac{2 x}{x^{2}+1}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& y=\ln (\ln x) \\
& y^{\prime}=\frac{(\ln x)^{\prime}}{\ln x}=\frac{\frac{1}{x}}{\ln x}=\frac{1}{x \ln x}
\end{aligned}
$$

2) $y \cos x=x^{2}+y^{2}$

Differentiate both sides with respect $\% x$:

$$
\begin{aligned}
& y^{\prime} \cos x-y \sin x=2 x+2 y y^{\prime} \\
\Rightarrow & y^{\prime}(\cos x-2 y)=2 x+y \sin x \\
\Rightarrow & \frac{d y}{d x}=y^{\prime}=\frac{2 x+y \sin x}{\cos x-2 y}
\end{aligned}
$$

Differentiate both sides with respect to y :

$$
\begin{aligned}
& \cos x-y x^{\prime} \sin x=2 x x^{\prime}+2 y \\
\Rightarrow & \cos x-2 y=(2 x+y \sin x) x^{\prime} \\
\Rightarrow & \frac{d x}{d y}=x^{\prime}=\frac{\cos x-2 y}{2 x+y \sin x}
\end{aligned}
$$

