Quiz 6

1. Find the absolute maximum and absolute minimum values of the function

$$
f(x)=2 x^{3}-3 x^{2}+6 \text { on }[-1,2] .
$$

2. Show that the following equation has exactly one root

$$
3 x+\sin x+\cos x=0 .
$$

(1) $f^{\prime}(x)=6 x^{2}-6 x=6 x(x-1)$

Critical points are $x=0$ and $x=1$.

$$
\begin{aligned}
& f(-1)=2(-1)^{3}-3(-1)^{2}+6=1 \\
& f(0)=6 \\
& f(1)=5 \\
& f(2)=10
\end{aligned}
$$

The absolute maximum of f^{1} is $\quad f(2)=10$.
The absolute minimum of f on $[-1,2]$ is $f(-1)=1$.
(2) Put $f(x)=3 x+\sin x+\cos x$.
f is continuous on \mathbb{R}.

$$
\begin{aligned}
& f(-1)=-3+\sin (-1)+\cos (-1)<0 \\
& f(1)=3+\sin 1+\cos 1>0
\end{aligned}
$$

By the Intermediate Value Theorem, there exists $c \in(-1,1)$ such that $f(c)=0$.

$$
f^{\prime}(x)=3+\cos x-\sin x>0
$$

Thus, f is an increasing function. It, Therefore, has at most one root. We conclude that f has exactly one root.

