Quiz 6

1. Find the absolute maximum and absolute minimum values of the function

$$f(x) = 2x^3 - 3x^2 + 6$$
 on $[-1, 2]$.

2. Show that the following equation has exactly one root

$$3x + \sin x + \cos x = 0.$$

(1)
$$f'(n) = 6n^2 - 6n = 6n(n-1)$$

Critical points are $n = 0$ and $n = 1$.
 $f(-1) = 2(-1)^3 - 3(-1)^2 + 6 = 1$
 $f'(0) = 6$
 $f(1) = 5$
 $f(2) = 10$ on $[-1,2]$
The absolute maximum of $f'(s)$ $f'(2) = 10$.
The absolute minimum of $f'(s)$ $f'(2) = 10$.

2) Put
$$f(x) = 3x + \sin x + \cos x$$
.

 $f(x) = 3x + \sin x + \cos x$.

 $f(-1) = -3 + \sin (-1) + \cos (-1) < 0$
 $f(1) = 3 + \sin 1 + \cos 1 > 0$

By the Intermediate Value Theorem, there exists $c \in (-1, 1)$ such that $f(c) = 0$.

 $f'(x) = 3 + \cos x - \sin x > 0$

Thus, f is an increasing function. It, therefore, has at most one root. We conclude that f has enactly one root.