Quiz 7

1. Evaluate the limit

$$
\lim _{x \rightarrow 0} \frac{1-\cos x}{x \sin x}
$$

2. Find the points on the ellipse $x^{2}+9 y^{2}=1$ that are farthest away from the point $(0,-8)$.
(1)

$$
\begin{aligned}
& \begin{array}{l}
0 \\
0
\end{array} \\
& \lim _{x \rightarrow 0} \frac{1-\cos x}{x \sin x} \xlongequal{\underline{L} \text { lhespital }} \lim _{x \rightarrow 0} \frac{\sin x}{\sin x+x \cos x} \text { (still of the form } \frac{0}{0} \text {) } \\
& \text { L'towitiol } \\
& \lim _{x \rightarrow 0} \frac{\cos x}{\cos x+(\cos x-x \sin x)} \\
& =\frac{1}{1+(1-0)}=\frac{1}{2}
\end{aligned}
$$

(2) The distance between a point (x, y) to $(0,-8)$ is

$$
D=\sqrt{(x-0)^{2}+(y-(-8))^{2}}=\sqrt{x^{2}+(y+8)^{2}}
$$

A point (x,y) belongs to the ellipse if $x^{2}+9 y^{2}=1$. We obtain $x^{2}=1-9 y^{2}$. Thus, $D=\sqrt{1-9 y^{2}+(y+8)^{2}}=\sqrt{-8 y^{2}+16 y+65}$

We want to maximize D
Note that the equation $x^{2}+y_{y}=1$ gives us a constraint $y^{2} \leqslant \frac{1}{9}$. In other words, $-\frac{1}{3} \leqslant y \leqslant \frac{1}{3}$
It is more convenient to maximize

$$
f(y)=D(y)^{2}=-8 y^{2}+16 y+65 \text { on }\left[-\frac{1}{3}, \frac{1}{3}\right]
$$

We have $f^{\prime}(y)=-16 y+16=16(1-y)>0$.
Thus, f is an increasing function. It attains maximum when $y=\frac{1}{3}$. Then $x^{2}=1-9 y^{2}=1-g\left(\frac{1}{3}\right)^{2}=0$. We get $\left(0, \frac{1}{3}\right)$

