Name

Quiz 8

1. Evaluate the area under the graph $f(x)=x^{2}$ from $x=0$ to $x=5$ using five approximating rectangles and right endpoints. Is your estimate an overestimate or an underestimate?
2. Express the following limit as a definite integral

$$
\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \frac{1}{n} \sqrt{1+\frac{i}{n}}
$$

$$
\begin{aligned}
& \Delta x=\frac{5-0}{5}=1 \\
& x_{0}=0 \\
& x_{1}=1 \\
& x_{2}=2 \\
& x_{3}=3 \\
& x_{4}=4 \\
& x_{5}=5
\end{aligned}
$$

Right endpoints: $x_{1}^{*}=1, x_{2}^{*}=2, x_{3}^{*}=3, x_{4}^{*}=4, x_{5}^{*}=5$.

$$
\text { Area } \approx \sum_{i=1}^{5} f\left(x_{i}^{*}\right) 4 x=\sum_{i=1}^{5}\left(x_{i}^{*}\right)^{2} \times 1=1^{2}+2^{2}+3^{2}+4^{2}+5^{2}=55
$$

This is an overestimate: the value of f at the right endpoint of each subinterval is the maximum value of f in that subinterval.
(2) There are multiple correct answers to this questions. Two of them are

$$
\int_{1}^{2} \sqrt{x} d x \quad \text { and } \int_{0}^{1} \sqrt{1+x} d x
$$

