Lab worksheet

9/25/2017

1. Write the equation of the plane that contains point $A(1,2,3)$ and perpendicular to vector $\vec{n}=\langle 2,-1,1\rangle$. Plot the plane.
2. Write the equation of the plane that contains point $A(1,2,-1)$ and parallel to two vectors $\vec{a}=\langle 0,2,1\rangle$ and $\vec{b}=\langle-2,1,2\rangle$.
3. The parametric equation of a plane which contains point $A\left(x_{0}, y_{0}, z_{0}\right)$ and parallel to two vectors $\vec{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ and $\vec{b}=\left\langle b_{1}, b_{2}, b_{3}\right\rangle$ is

$$
\left\{\begin{array}{l}
x=x_{0}+t a_{1}+s b_{1} \\
y=y_{0}+t a_{2}+s b_{2} \\
z=z_{0}+t a_{3}+s b_{3}
\end{array}\right.
$$

In short notations, $P(t, s)=A+t \vec{a}+s \vec{b}$.
Now write the parametric equation of the plane in Problem 2. Plot the plane. (You will need the command ParametricPlot3D)
4. Given a single-variable function $y=f(x)$.
(a) Write coordinates of a point A on the graph whose x-coordinate is x_{0}.
(b) Write the equation of the line passing through A and tangent to the graph.
(c) Write a direction vector of that line.
5. Given a two-variable function $z=f(x, y)$.
(a) Write coordinates of a point A on the graph (surface) whose (x, y)-coordinates are $\left(x_{0}, y_{0}\right)$.
(b) The cross section $x=x_{0}$ of the surface is a curve whose equation is $z=f\left(x_{0}, y\right)$. Write a direction vector of the tangent line to this curve at point A.
(c) The cross section $y=y_{0}$ of the surface is a curve whose equation is $z=f\left(x, y_{0}\right)$. Write a direction vector of the tangent line to this curve at point A.
(d) Write a parametric equation of the plane tangent to the surface at A.
6. (Exercise 2 of Lab 3) Given the function $g(x, y)=x^{2}-y^{2}$. Write a parametric equation for the tangent plane of fucntion g at $(1,2)$. Plot the surface and together with the tangent plane. (You will need the command Show.)
7. Given a two-variable function $z=f(x, y)$. Define $g(x, y, z)=z-f(x, y)$.
(a) What is the level set $g(x, y, z)=0$ in relation to the graph of function f ?
(b) Using the principle "a level set is perpendicular to the gradient vector', determine a normal vector of this level set at point $\left(x_{0}, y_{0}, z_{0}\right)$?
(c) What is the equation of the equation of the tangent plane of the graph of f at point $A\left(x_{0}, y_{0}, z_{0}\right)$?
8. (Exercise 4 of Lab 3) Given the function $f(x, y)=x e^{-x^{2}-y^{2}}$. Using the method in Problem 7 , find the equation of the plane tangent to the graph of f at point $(0,0, f(0,0))$.

