Lab worksheet

10/24/2017

1. There are several ways to plot a surface over a region (instead of a rectangle as we usually do). One way is to use Plot3D with some modification in the range. For example, to plot the surface $z=x y^{3}$ over the circle $x^{2}+y^{2}=1$, we write

$$
\operatorname{Plot} 3 \mathrm{D}\left[\mathrm{xy}^{3},\{\mathrm{x}, 0,1\},\left\{\mathrm{y},-\sqrt{1-\mathrm{x}^{2}}, \sqrt{1-\mathrm{x}^{2}}\right\}\right]
$$

Another way is to use the option RegionFunction inside Plot3D. For example, the above graph can be plotted by

Plot3D[xy ${ }^{3},\{\mathrm{x}, 0,1\},\{\mathrm{y}, 0,1\}$, RegionFunction \rightarrow Function $\left[\{\mathrm{x}, \mathrm{y}\}, \mathrm{x}^{2}+\mathrm{y}^{2} \leq 1\right]$
If you add the option Filling \rightarrow Bottom, it will even look nicer.

Practice

(a) Plot the surface $z=x y^{2}$ over the annulus centered at $(0,0)$ with inner radius 1 and outer radius 2 .
(b) Plot the same function over the ellipse $(x-1)^{2}+4(y-1)^{2}=9$.
2. To compute gradient, divergence, and curl of a vector field, use the commands Grad, Div and Curl respectively. For example,
$\operatorname{Grad}[F(x, y, z),\{x, y, z\}]$
$\operatorname{Div}[F(x, y),\{x, y\}]$
$\operatorname{Curl}[\mathrm{F}(\mathrm{x}, \mathrm{y}, \mathrm{z}),\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}]$
A remark before practice: usually we only define curl for a 3 -variable vector field. However, given a 2 -variable vector field, we still have a way define the curl. For example, let $F(x, y)=\langle f(x, y), g(x, y)\rangle$. This function can be thought as $\tilde{F}(x, y, z)=$ $\langle f(x, y), g(x, y), 0\rangle$, whose curl is

$$
\left\langle 0,0, \frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}\right\rangle
$$

Thus, the curl of F can be defined as

$$
\operatorname{curl} F=\frac{\partial g}{\partial x}-\frac{\partial f}{\partial y}
$$

which is a scalar.

Practice

(a) Compute the divergence and gradient of $F(x, y, z)=\left\langle x y^{2}, y z^{2}, z x^{2}\right\rangle$.
(b) Let $F(x, y)=\langle x, y\rangle$. Plot vector field F. (You will need the VectorPlot command. Press F1 to look up the syntax if you forget). Explain intuitively based on the plot why the divergence at $(0,0)$ and at $(1,1)$ must be positive.
(c) Let $F(x, y)=\langle-y, x\rangle$. Plot vector field F. Explain intuitively based on the plot why the divergence at $(1,1)$, and why curl at $(0,0)$ must be positive.
(d) Let $F(x, y)=\langle-x,-x\rangle$. Plot vector field F. Explain intuitively based on the plot why the curl at $(1,1)$ must be negative.
(e) Let $f(x, y)=x y^{2}$. Plot the gradient vector field of f. Explain intuitively based on the plot why the curl of the gradient must be zero.

