Worksheets

10/19/2017

1. Compute the length of the cycloid $c(t)=(t-\sin t, 1-\cos t), t \in[0,2 \pi]$.
[Hint: You will need the trigonometric identity $1-\cos (2 \theta)=2 \sin ^{2} \theta$.]
2. Let $F(x, y, z)=\left\langle x y^{2}, y+z x, z x^{2}\right\rangle$. Find div $F, \operatorname{curl} F$ and $\operatorname{div} \nabla F$.
3. A wire is parametrized by $c(t)=(\cos t, \sin t, t), 0 \leq t \leq \frac{\pi}{2}$. Let its mass density at point (x, y, z) be given by $f(x, y, z)=x y$. Find the mass of the wire.
[Hint: You will need the trigonometric identity $\sin (2 \theta)=2 \sin \theta \cos \theta$.]
4. (Exercise 25, p.259) Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a vector field. Which of the following expressions are meaningful, and which are nonsense? For those which are meaningful, decide whether the expression defines a scalar function or a vector field.
(a) $\operatorname{curl}(\operatorname{grad} F)$
(b) $\operatorname{grad}($ curl F$)$
(c) $\operatorname{div}(\operatorname{grad} F)$
(d) $\operatorname{grad}(\operatorname{div} F)$
(e) $\operatorname{curl}(\operatorname{div} \mathrm{F})$
(f) $\operatorname{div}($ curl F$)$
5. Find the work done by the force field $F(x, y)=\langle x, 1\rangle$ on a particle that moves along the cycloid in Problem 1.
6. Fill in the blanks

$$
\int_{0}^{1} \int_{x}^{1} \int_{0}^{y-x} f(x, y, z) d z d y d x=\iiint \quad d x d y d z
$$

Then sketch the region for the integral.
7. Find a parametrization for the curve C which is the intersection of
(a) the cylinder $y^{2}+z^{2}=1$ and the plane $z=x$
(b) the cone $z=\sqrt{x^{2}+y^{2}}$ and the sphere $x^{2}+y^{2}+z^{2}=2$.
8. Compute the volume of the solid bounded by the planes $x=0, y=0, z=0, x+y=0$ and $x=z-y-1$.

