Worksheets 10/19/2017

1. Compute the length of the cycloid $c(t) = (t - \sin t, 1 - \cos t), t \in [0, 2\pi].$ [*Hint: You will need the trigonometric identity* $1 - \cos(2\theta) = 2\sin^2 \theta.$]

2. Let $F(x, y, z) = \langle xy^2, y + zx, zx^2 \rangle$. Find div F, curl F and div ∇F .

3. A wire is parametrized by $c(t) = (\cos t, \sin t, t), \ 0 \le t \le \frac{\pi}{2}$. Let its mass density at point (x, y, z) be given by f(x, y, z) = xy. Find the mass of the wire. [*Hint: You will need the trigonometric identity* $\sin(2\theta) = 2\sin\theta\cos\theta$.]

4. (Exercise 25, p.259) Let $F : \mathbb{R}^3 \to \mathbb{R}^3$ be a vector field. Which of the following expressions are meaningful, and which are nonsense? For those which are meaningful, decide whether the expression defines a scalar function or a vector field.

(a) $\operatorname{curl}(\operatorname{grad} F)$

(b) grad(curl F)

(c) div(grad F)

(d) grad(div F)

(e) curl(div F)

(f) div(curl F)

5. Find the work done by the force field $F(x,y) = \langle x,1 \rangle$ on a particle that moves along the cycloid in Problem 1.

6. Fill in the blanks

$$\int_0^1 \int_x^1 \int_0^{y-x} f(x, y, z) dz dy dx = \int \int \int \int dx dy dz$$

Then sketch the region for the integral.

- 7. Find a parametrization for the curve C which is the intersection of
 - (a) the cylinder $y^2 + z^2 = 1$ and the plane z = x

(b) the cone $z = \sqrt{x^2 + y^2}$ and the sphere $x^2 + y^2 + z^2 = 2$.

8. Compute the volume of the solid bounded by the planes x = 0, y = 0, z = 0, x + y = 0 and x = z - y - 1.