Worksheets

10/26/2017

1. Evaluate the following line integrals $\int_{C} f(x, y, z) d s$, where
(a) $f(x, y, z)=x+y+z$ and $C(t)=(\sin t, \cos t, t), t \in[0,2 \pi]$
(b) $f(x, y, z)=y z$ and $C(t)=(t, 3 t, 2 t), t \in[1,3]$
2. Find an parametrization of the ellipse

$$
\frac{(x-2)^{2}}{4}+\frac{(y-3)^{2}}{9}=1
$$

oriented counterclockwise. Then express the length of the ellipse as an integral (but don't evaluate).
3. Evaluate the following line integrals:
(a) $\int_{C} x d y-y d x$ where $C(t)=(\cos t, \sin t), t \in[0,2 \pi]$
(b) $\int_{C} d y+d x$ where C is the ellipse given in Problem 2.
4. Consider the force field $F(x, y, z)=\langle x, y, z\rangle$. Compute the work done in moving a particle along the parabola $y=x^{2}, z=0$ from $x=-1$ to $x=2$.
5. A wire has parametrization $c(t)=\left(t^{2}, t, 3\right), 0 \leq t \leq 1$. The mass density at point (x, y, z) is given by $\rho(x, y, z)=y$. Compute the mass of the wire.

Recall the Green's theorem

$$
\int_{\partial D} P d x+Q d y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

where ∂D denotes the boundary of D, positively oriented.
6. Let D be a region on the plane. Choose appropriate P and Q so that

$$
\operatorname{Area}(D)=\iint_{D} 1 d A=\int_{\partial D} P d x+Q d y
$$

7. Use the formula in Problem 6 to compute the area of the ellipse in Problem 2.
