Worksheets

11/16/2017

1. Consider a surface given by $x=2 u, y=u^{2}+v, z=v^{2}$.
(a) Find two tangent vectors to the surface at point $\mathrm{A}(0,1,1)$.
(b) Find a normal vector to the surface at point A.
(c) Write cartesian and parametric equations for the tangent plane at point A .
2. Give a parametrization for the following surfaces
(a) The single cone $z^{2}=x^{2}+y^{2}, z \geq 0$
(b) The elliptic cone $z^{2}=4 x^{2}+9 y^{2}, z \geq 0$
(c) The unit sphere $x^{2}+y^{2}+z^{2}=1$
(d) The ellipsoid $x^{2}+4 y^{2}+\frac{(z-1)^{2}}{9}=1$
3. Let S be the ellipsoid $x^{2}+4 y^{2}+\frac{(z-1)^{2}}{9}=1$.
(a) Apply the principle "Level sets of a function are perpendicular to its gradient vectors" to find a normal vector to S at point A $\left(\frac{1}{3}, \frac{1}{3}, 3\right)$.
(b) Write the cartesian equation for the tangent plane at point A .
(c) Compared to Problem 1, what makes it (a little) easier for us to find the tangent plane in this problem.
4. Consider a surface S given by $x=u^{2}, y=v^{2}, z=u v, 0 \leq u, v \leq 1$.
(a) Find the tangent vectors T_{u} and T_{v}
(b) Calculate $\left\|T_{u} \times T_{v}\right\|$
(c) Find the area of S
5. A surface S is given by parametric equations $x=u-v, y=u+v, z=u v$, where $u^{2}+v^{2} \leq 1$.
(a) Find the area of the surface
(b) Compute the integral

$$
\iint_{S}(x+y) d S
$$

