Worksheet

11/9/2017

1. (a) Compute the Jacobian determinant $\frac{\partial(x, y)}{\partial(u, v)}$ of the transformation $x=u+v, y=-u+2 v$.
(b) Compute the Jacobian determinant $\frac{\partial(x, y)}{\partial(u, v)}$ of the transformation $u=x y, v=y / x$. (Note: you need to solve for x and y in terms of u,v.)
(c) Compute the Jacobian determinant $\frac{\partial(x, y, z)}{\partial(u, v, w)}$ of the transformation $x=u v+w, y=w$, $z=v$.
2. Use the polar coordinates to compute

$$
\iint_{R} \cos \left(x^{2}+y^{2}\right) d A
$$

where R is the annulus $1 \leq x^{2}+y^{2} \leq 4$.
3. Determine the new region that we get by applying the given transformation to the region R.
(a) R is the region bounded by $y=x, y=3 x, x+y=4$, and the tranformation is $x=u-v$, $y=u+v$.
(b) R is the region bounded by $x=0, x=1, y=0, y=\sqrt{x}$, and the tranformation is $x=u^{2}, y=v$.
4. Use the cylindrical coordinates to compute

$$
\iiint_{E}(8+x+y) d V
$$

where E is the solid bounded by $z=16-x^{2}-y^{2}$ and $z=0$.
5. Use the spherical coordinates to compute

$$
\iiint_{U} \sqrt{x^{2}+y^{2}+z^{2}} d V
$$

where U is the unit ball $x^{2}+y^{2}+z^{2}=1$.
6. Use a suitable change of variables to compute the area of the ellipse

$$
\frac{x^{2}}{9}+\frac{y^{2}}{4}=1
$$

7. Compute

$$
\iint_{R} \sqrt{x y} d A
$$

where R is the region bounded by $x y=1, x y=9, y=x, y=2 x$, using the change of variables $u=x y, y=v x$.

