Worksheets

12/7/2017

1. Let $\vec{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a vector field, and $c=c(t)$ be a curve. You have learned three methods to compute $\int_{c} \vec{F} \cdot d \vec{s}$.
(a) What are they?
(b) In what situations is one method more favorable than the others?
(c) Use your judgment to choose a method to compute $\int_{C} \vec{F} \cdot d \vec{s}$ where
i. $\vec{F}(x, y, z)=(x, y, z)$, and $c(t)=\left(t^{2}, 3 t, 2 t^{3}\right), 0 \leq t \leq 1$.
ii. $\vec{F}(x, y, z)=(y z, z x, x y)$, and c consists of straight lines joining $(1,0,0),(0,1,0)$, $(0,0,1)$ (in this order).
2. Let $\vec{F}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a vector field, and $S=\Phi(u, v)$ be a surface. You have learned two methods to compute $\int_{S} \vec{F} \cdot d \vec{S}$.
(a) What are they?
(b) In what situations is one method more favorable than the other?
(c) Use your judgment to choose a method to compute $\int_{S} \vec{F} \cdot d \vec{S}$ where
i. $\vec{F}(x, y, z)=\left(2 x,-2 y, z^{2}\right)$, and S is the cylinder $x^{2}+y^{2}=4$ with $0 \leq z \leq 1$.
ii. $\vec{F}(x, y, z)=\left(2 x, y^{2}, z^{2}\right)$, and S is the unit sphere $x^{2}+y^{2}+z^{2}=1$.
3. Give a parametrization to the following shape (curve/ surface/ solid):
(a) The intersection of the cylinder $x^{2}+(y-1)^{2}=1$ and the graph $z=x^{2}-y^{2}$.
(b) The triangle with vertices $(1,0,0),(0,2,0),(0,1,1)$.
(c) The upper half ellipsoid

$$
E=\left\{(x, y, z): \frac{x^{2}}{4}+(y-1)^{2}+4 z^{2}=1, \quad z \geq 0\right\}
$$

4. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Denote $\vec{X}=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $\vec{a}=\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]$. Recall that the second-order Taylor approximation of f near \vec{a} is

$$
f(\vec{X}) \approx f(\vec{a})+\nabla f(\vec{a})(\vec{X}-\vec{a})+\frac{1}{2}(\vec{X}-\vec{a})^{T} H f(\vec{a})(\vec{X}-\vec{a})
$$

Here $H f(\vec{a})$ is the Hessian matrix.
Now compute the second-order Taylor approximation for the function $f(x, y)=e^{x} \cos y$ near the point $\vec{a}=(0,0)$. Then find an approximate value of f at (.1, -.01).

