Worksheets

9/21/2017

1. Let $f(x, y, z)=x y^{2} z^{3}$. Compute the following partial derivatives

$$
\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}, \frac{\partial^{2} f}{\partial x \partial y}, \frac{\partial^{2} f}{\partial z^{2}} .
$$

2. With the function f given above, find

$$
\frac{\partial f}{\partial x}(1,2,-1)
$$

in two ways: (1) plugging the numbers into the function found in the previous problem, (2) using limit definition.
3. Let

$$
A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 1 \\
3 & -1 & 2
\end{array}\right], \quad B=\left[\begin{array}{ll}
1 & 1 \\
2 & 3 \\
1 & 0
\end{array}\right], \quad v=\left[\begin{array}{c}
-1 \\
2
\end{array}\right]
$$

Compute $A B, B A$, and $B v$.
4. Given four points $\mathrm{A}(1,0,1), \mathrm{B}(2,1,1), \mathrm{C}(2,3,0)$ and $\mathrm{D}(0,-1,2)$. Find the volume of the parallelepiped of which $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are vertices such that A is adjacent to $\mathrm{B}, \mathrm{C}, \mathrm{D}$.
5. Write the parametric equation of the line which is the intersection of the planes $x+2 y+z=0$ and $2 x-y=1$.
6. Find the area of the quadrilateral whose vertices are $\mathrm{A}(1,1), \mathrm{B}(3,0), \mathrm{C}(4,3)$ and $\mathrm{D}(1,2)$.
7. Indicate whether each of the following maps is a linear map from \mathbb{R}^{2} to \mathbb{R}^{2}. If a map is linear, find the matrix associate with it.
(a) $f(x, y)=(x, x+y)$
(b) $g(x, y)=(x y, 0)$
(c) $h(x, y)=(y-x, x, y)$
(d) $k(x, y)=(0,0)$
8. (Just for fun!) Is there a linear map from \mathbb{R}^{2} to \mathbb{R}^{2} which maps a rectangle to a circle?

