Worksheets

9/28/2017

1. Given a function $f(x, y)=e^{x+y} \cos (x y)$,
(i) Compute the gradient vector ∇f.
(ii) Calculate the directional derivative $D_{\vec{a}} f$ at point $(0,0)$ in the direction of vector $\vec{a}=$ $\langle 2,-1\rangle$.
(iii) Calculate the directional derivative $D_{\vec{b}} f$ at point $(0,0)$ in the direction of vector $\vec{b}=$ $\nabla f(0,0)$.
2. Given a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, f(x, y)=\left(x y, x+y^{2}, \sin y\right)$,
(i) Compute the derivative matrix (or Jacobian matrix) $D f$.
(ii) Find the derivative matrix of f at point $(1,0)$.
(iii) Calculate the linear approximation $L(x, y)$ of f at point $(1,0)$.
(iv) Use the linear approximation above to estimate $f(1,-0.1)$.
3. Given a function $z=f(x, y)=x^{2}-x y+y^{2}$ and a point $A(1,-1,3)$ which lies on its graph.
(a) The cross section $x=1$ of the graph is a curve. Write a direction vector of the tangent line to this curve at point A.
(b) The cross section $y=-1$ of the graph is a curve. Write a direction vector of the tangent line to this curve at point A.
(c) Write a parametric equation of the plane tangent to the graph at A.
4. Let f be the same function as in Problem 3. Define $g(x, y, z)=z-f(x, y)$.
(a) What is the level set $g(x, y, z)=0$ in relation to the graph of function f ?
(b) Using the principle "a level set is perpendicular to the gradient vector", determine a normal vector of this level set at point $A(1,-1,3)$.
(c) What is the (cartesian) equation of the tangent plane of the graph of f at point A ?
5. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$. Put $x=t s, y=t+s$ and $g(t, s)=f(x, y)=f(t s, t+s)$. Express the

$$
\frac{\partial g}{\partial t}, \frac{\partial g}{\partial s}, \frac{\partial^{2} g}{\partial t \partial s}
$$

in terms t, s and partial derivatives of f.

