Worksheets 9/28/2017

- 1. Given a function $f(x,y) = e^{x+y}\cos(xy)$,
 - (i) Compute the gradient vector ∇f .

(ii) Calculate the directional derivative $D_{\vec{a}}f$ at point (0,0) in the direction of vector $\vec{a} = \langle 2, -1 \rangle$.

(iii) Calculate the directional derivative $D_{\vec{b}}f$ at point (0,0) in the direction of vector $\vec{b} = \nabla f(0,0)$.

- 2. Given a function $f : \mathbb{R}^2 \to \mathbb{R}^3$, $f(x, y) = (xy, x + y^2, \sin y)$,
 - (i) Compute the derivative matrix (or Jacobian matrix) Df.

(ii) Find the derivative matrix of f at point (1,0).

(iii) Calculate the linear approximation L(x, y) of f at point (1,0).

(iv) Use the linear approximation above to estimate f(1, -0.1).

- 3. Given a function $z = f(x, y) = x^2 xy + y^2$ and a point A(1, -1, 3) which lies on its graph.
 - (a) The cross section x = 1 of the graph is a curve. Write a direction vector of the tangent line to this curve at point A.
 - (b) The cross section y = -1 of the graph is a curve. Write a direction vector of the tangent line to this curve at point A.
 - (c) Write a parametric equation of the plane tangent to the graph at A.

- 4. Let f be the same function as in Problem 3. Define g(x, y, z) = z f(x, y).
 - (a) What is the level set g(x, y, z) = 0 in relation to the graph of function f?
 - (b) Using the principle "a level set is perpendicular to the gradient vector", determine a normal vector of this level set at point A(1, -1, 3).

(c) What is the (cartesian) equation of the tangent plane of the graph of f at point A?

5. Let $f : \mathbb{R}^2 \to \mathbb{R}$. Put x = ts, y = t + s and g(t, s) = f(x, y) = f(ts, t + s). Express the

$$\frac{\partial g}{\partial t}, \ \frac{\partial g}{\partial s}, \ \frac{\partial^2 g}{\partial t \partial s}$$

in terms t, s and partial derivatives of f.