Worksheet 9/7/2017

- 1. Given vectors $\vec{a} = \langle 1, -1, 0 \rangle$ and $\vec{b} = \langle -2, 1, 3 \rangle$.
 - i) Compute $||3\vec{a} 2\vec{b}||$.
 - ii) Find α so that vector $\vec{a} + \alpha \vec{b}$ is collinear with vector $\vec{c} = \langle -6, 2, 12 \rangle$.

- 2. Given vectors $\vec{a} = \langle 1, 0, 1 \rangle$, $\vec{b} = \langle 0, -1, 1 \rangle$, $\vec{c} = \langle 1, 2, 1 \rangle$. Compute
 - i) $\vec{a} \cdot \vec{b}$
 - ii) $(\vec{a} \times \vec{b}) \cdot \vec{c}$
 - iii) $(\vec{a} \times \vec{b}) \times \vec{c}$

3. Compute the area of the shaded triangle in the following picture. Also, compute the angles of the triangle.

4. Write the parametric equation of the line passing through the points A = (1, 0, 1) and B = (1, -1, 2). Can you determine the intersection of this line and the plane z = 0?