Worksheets

05/01/2018

1. Solve the following initial-value problem using Laplace transform

$$
\overrightarrow{\mathbf{x}}^{\prime}=\left[\begin{array}{ll}
3 & -3 \\
2 & -2
\end{array}\right] \overrightarrow{\mathbf{x}}+\left[\begin{array}{c}
4 \\
-1
\end{array}\right], \quad \overrightarrow{\mathbf{x}}(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

2. Solve the following initial-value problem using undetermined coefficient method (i.e. superposition method)

$$
\overrightarrow{\mathbf{x}}^{\prime}=\left[\begin{array}{cc}
0 & -1 \\
3 & 4
\end{array}\right] \overrightarrow{\mathbf{x}}+\left[\begin{array}{c}
t \\
-4 t-2
\end{array}\right], \quad \overrightarrow{\mathbf{x}}(0)=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

3. Determine a closed-form solution for the Fibonacci iterative equation

$$
y_{0}=1, y_{1}=1, y_{n+1}=y_{n}+y_{n-1}
$$

4. A certain horse runs in a three-horse race. If he wins a race, he has probability $1 / 2$ of winning, $1 / 3$ coming in second, and $1 / 6$ coming in third the next race. If he comes in second on a race, he has probability $1 / 3$ of winning, $1 / 6$ coming in second, and $1 / 2$ coming in third the next race. If he comes in third on a race, he has probability $1 / 3$ of winning, $1 / 3$ coming in second, and $1 / 3$ coming in third the next race. Let x_{n}, y_{n}, z_{n} respectively be the probability the horse coming in first, second, third in the n'th race. Then

$$
\left[\begin{array}{l}
x_{n+1} \\
y_{n+1} \\
z_{n+1}
\end{array}\right]=A\left[\begin{array}{l}
x_{n} \\
y_{n} \\
z_{n}
\end{array}\right]
$$

(a) Find the 3×3 matrix A.
(b) The horse comes in second on the first race. Find the probability that he wins / comes in second / third on race n. [Given that the eigenvalues of matrix A are $1,1 / 6,-1 / 6$.]
(c) What is the limit of x_{n} as $n \rightarrow \infty$?
5. Solve the initial-value problem

$$
\overrightarrow{\mathbf{x}}^{\prime}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 2 \\
0 & -2 & 0
\end{array}\right] \overrightarrow{\mathbf{x}}, \quad \overrightarrow{\mathbf{x}}(0)=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

