HOMEWORK \#1 (DUE FRIDAY, SEPT. 23).

9/11/2011

Note: Turn in only the "starred" problems; out of these, only selected problems will be graded.
1.* Find all subgroups of the additive group $\mathbb{Z} \times \mathbb{Z}$.
2. Let G be group and let H be a subgroup in G.
(a) Show that there is a bijection between the sets of left and right cosets of H in G. In particular, one can define the index $(G: H)$ as the cardinality of the set of right cosets.
(b) Show that a subgroup of index two is always normal.
3.* Let G be a group, H a subgroup in G, and let N_{H} be the normalizer of H.
(a) Show that if $K<G$ is a subgroup such that H is a normal subgroup of K, then $K \subset N_{H}$, i.e., N_{H} is the largest subgroup of G in which H is normal.
(b) If K is a subgroup contained in N_{H}, then $K H$ is a group and H is a normal subgroup in $K H$.
(c) If G is finite and $K \subset N_{H}$, then

$$
|K H|=\frac{|H||K|}{|H \cap K|}
$$

4. Determine all (nonisomorphic) finite groups with order at most 8 .
5.* Problem 7, page 75 in Lang.
6.* Problem 9, page 75 in Lang.
7.* (Divisible groups) An abelian group $(G,+)$ is said to be divisible if for any $y \in G$ and $n \in \mathbb{Z}, n \neq 0$, there is an x in G with $n x=y$. (The simplest example is $(\mathbb{Q},+)$.
(a) Show that any divisible group G is infinite, and that G has no subgroups of finite index other than G itself.
(b) Let $U=\mathbb{Q} / \mathbb{Z}$. Show that every element of U is a torsion element, that is, every element has finite order (or finite period, in the terminology in Lang's book). For each $n \geq 1$ show that U has a unique subgroup of order n, and that this subgroup is cyclic.
(c) For a prime p, let U_{p} be the sugroup of U consisting of all p-torsion elements, that is, all elements whose order is a power of p. Show that U_{p} is a divisible group, and describe all its subgroups.
(Remark: We'll revisit divisible groups (in a more general context) towards the end of the Spring semester when we'll do a bit of Homological Algebra, and we'll use the results in this problem at that time. We'll also show then that any divisible group is a direct sum of copies of \mathbb{Q} and U_{p} for various p.)
8.* Let G be a finite abelian group which is not cyclic. Prove that there is a prime number p and a subgroup H of G with $H \cong \mathbb{Z} / p \mathbb{Z} \times \mathbb{Z} / p \mathbb{Z}$.
