HOMEWORK \#4 (DUE FRIDAY, OCT. 28).

10/21/2011

Turn in the starred problems only.

1. Let A be a commutative ring and let $S \subset A$ be a multiplicative system which does not contain zero divisors. Show that the canonical inclusion $S^{-1}\left(A\left[X_{1}, \ldots, X_{n}\right]\right) \subset$ $\left(S^{-1} A\right)\left[X_{1}, \ldots, X_{n}\right]$ is an isomorphism, but in general the inclusion $S^{-1}(A[[X]]) \subset$ $\left(S^{-1} A\right)[[X]]$ is not bijective.
2. Let A be a commutative ring and let $f \in A$ be an element which is not a zero divisor. Show that $A_{f} \cong A[X] /(f X-1)$. (Recall that A_{f} denotes the ring of fractions $S^{-1} A$ for $S=\left\{1, f, f^{2}, \ldots\right\}$.)
3. Let $\phi: A \subset B$ be a morphism of commutative rings, S a multiplicative system in A, and T a multiplicative system in B with $\phi(S) \subset B$. Show that there exists an unique morphism $\phi^{\prime}: S^{-1} A \rightarrow T^{-1} B$ such that $\phi i_{T}=i_{S} \phi^{\prime}$, where $i_{S}: A \rightarrow S^{-1} A$ and $i_{T}: B \rightarrow T^{-1} B$ are the canonical morphisms.
4^{*}. Let A be a commutative ring and let $S \subset A$ be a multiplicative system which does not contain zero divisors. Put

$$
T=\{x \in A \mid \text { there are } s \in S, y \in A \text { with } s=x y\}
$$

(i) Show that T is a multiplicative system with the property that $x y \in T$ iff $x \in T$ and $y \in T$. (In general a multiplicative system with this property is called saturated. The system T defined above is called the saturation of S.)
(ii) Show that $S^{-1} A \cong T^{-1} A$.
5. Let A be a commutative ring and let $S \subset A$ be a multiplicative system which does not contain zero divisors. Let \mathfrak{a} and \mathfrak{b} be ideals in A. The subset

$$
S^{-1} \mathfrak{a}=\left\{\left.\frac{a}{s} \right\rvert\, a \in \mathfrak{a}, s \in S\right\}
$$

is obviously an ideal in $S^{-1} A$. Prove the following:
(i) If $\mathfrak{a} \subset \mathfrak{b}$ then $S^{-1} \mathfrak{a} \subset S^{-1} \mathfrak{b}$.
(ii) $S^{-1}(\mathfrak{a}+\mathfrak{b})=S^{-1} \mathfrak{a}+S^{-1} \mathfrak{b}$.
(iii) $S^{-1}(\mathfrak{a} \cap \mathfrak{b})=S^{-1} \cap S^{-1} \mathfrak{b}$.
6^{*}. Let A be an integral domain and let S be a multiplicative system with $0 \notin S$.
(a) If A is euclidean, is the ring of fractions $S^{-1} A$ euclidean as well? If $S^{-1} A$ is euclidean, must A be euclidean?
(b) Same questions as in (a) if we replace "euclidean" by "principal ideal domain".
(c) Same questions as in (a) if we replace "euclidean" by "unique factorization domain".
$\mathbf{7}^{*}$. Let A be a factorial ring which is not a field and assume that the multiplicative group of invertible elements in A is finite. Show that there are infinitely many (non-associate) irreducible elements in A.
8*. Describe all the prime ideals in $\mathbb{Z}[X]$.
$\mathbf{9}^{*}$. Problem 1, page 114 in Lang.
10. Problem 2, page 115 in Lang.

11*. Problem 6, page 115 in Lang.

