Connectivity of the set of invertible elements of a complex Banach algebra

Tuan Pham

04/17/2015

1 Remark 1

Let B be a finite dimensional Banach algebra over \mathbb{C}. Then B^{\times}, the set of all invertible elements of B, is connected.

Proof. Denote by 1 the unit element of B. Let $a \in B^{\times}$. We show that 1 and a can be connected by a path in B^{\times}. Let A be the subalgebra of B generated by 1 and a. That is

$$
A=\{P(a): P(t) \in \mathbb{C}[t]\} .
$$

Because $A^{\times} \subset B^{\times}$, it suffices to find a path in A^{\times}that connects 1 with a.
First, we determine all multiplicative functionals of A. Since A is a linear subspace of B, it is finite dimensional. Then there exists $n \in \mathbb{N}$ such that $1, a, a^{2}, \ldots, a^{n}$ are linearly dependent. Assume n is the smallest number with this property. Then there exists a monic polynomial $q(t) \in \mathbb{C}[t]$ with degree n such that $q(a)=0$. Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \in \mathbb{C}$ be the distinct roots of $q(t)$. A multiplicative functional ϕ of A is determined by $\phi(a)$ because

$$
\phi(P(a)=P(\phi(a)) \quad \forall P(t) \in \mathbb{C}[t] .
$$

We have $q(\phi(a))=\phi(q(a))=\phi(0)=0$. Thus, $\phi(a) \in\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}\right\}$.
For each $1 \leq j \leq m$, we define a map $\phi_{j}: A \rightarrow \mathbb{C}, \phi_{j}(P(a))=P\left(\lambda_{j}\right)$ for all polynomials $P(t) \in \mathbb{C}[t]$. We show that ϕ_{j} is well-defined. Suppose $P(a)=Q(a)$ for some $P(t), Q(t) \in \mathbb{C}[t]$. Then $(P-Q)(a)=0$. Because $q(t)$ is the minimal polynomial of a, it divides $P(t)-Q(t)$. Then λ_{j} is a root of $P(t)-Q(t)$, which implies $P\left(\lambda_{j}\right)=Q\left(\lambda_{j}\right)$. Thus, ϕ_{j} is well-defined. It is clear from the definition of ϕ_{j} that it is a multiplicative functional of A with $\phi_{j}(a)=\lambda_{j}$. Therefore, $\phi_{1}, \phi_{2}, \ldots, \phi_{m}$ are all multiplicative functionals of A.

Next, we show that $a \in A^{\times}$. Because A is a commutative algebra, an element of A is invertible if and only if it does not vanish any of $\phi_{1}, \phi_{2}, \ldots, \phi_{m}$. Now suppose by contradiction that $\lambda_{j}=0$ for some $1 \leq j \leq m$. Then $q(t)$ is of the form

$$
q(t)=t^{n}+\alpha_{n-1} t^{n-1}+\ldots+\alpha_{1} t .
$$

Then $0=q(a)=a\left(t^{n-1}+\alpha_{n-1} t^{n-2}+\ldots+\alpha_{1}\right)$. Because $a \in B^{\times}, a^{n-1}+\alpha_{n-1} a^{n-2}+$ $\ldots+\alpha_{1}=0$. Then $1, a, a^{2}, \ldots, a^{n-1}$ are linearly dependent. This contradicts the minimality of n. Therefore, $\phi_{j}(a)=\lambda_{j} \neq 0$ for all $1 \leq j \leq m$. That is $a \in A^{\times}$.

A path in A^{\times}that connects 1 with a can be constructed as follows. Let $\theta_{1}, \theta_{2}, \ldots, \theta_{m} \in[0,2 \pi)$ be the arguments of $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}$ respectively. Take $\theta \in$ $(0, \pi) \backslash\left\{\pi-\theta_{1}, \ldots, \pi-\theta_{m}, 2 \pi-\theta_{1}, \ldots, 2 \pi-\theta_{m}\right\}$. Define a map $h:[0,1] \rightarrow A$,

$$
h(t)= \begin{cases}1+3 t e^{i \theta} a, & \text { if } 0 \leq t \leq \frac{1}{3} \\ 2-3 t+e^{i \theta} a, & \text { if } \frac{1}{3} \leq t \leq \frac{2}{3} \\ e^{i \theta(3-3 t)} a, & \text { if } \frac{2}{3} \leq t \leq 1 .\end{cases}
$$

Since $\theta+\theta_{j} \in(0,3 \pi) \backslash\{\pi, 2 \pi\}, e^{i \theta} \lambda_{j}$ is not a real number for every $j=1,2, \ldots, m$. Then

$$
\begin{aligned}
\phi_{j}\left(1+3 t e^{i \theta} a\right) & =\phi_{j}(1)+3 t e^{i \theta} \phi_{j}(a)=1+3 t e^{i \theta} \lambda_{j} \neq 0, \\
\phi_{j}\left(2-3 t+e^{i \theta} a\right) & =\phi_{j}(2-3 t)+e^{i \theta} \phi_{j}(a)=2-3 t+e^{i \theta} \lambda_{j} \neq 0, \\
\phi_{j}\left(e^{i \theta(3-3 t)} a\right) & =e^{i \theta(3-3 t)} \phi_{j}(a)=e^{i \theta(3-3 t)} \lambda_{j} \neq 0 .
\end{aligned}
$$

Then $h(t) \in A^{\times}$for all $t \in[0,1]$. It is clear that h is continuous and $h(0)=1$, $h(1)=a$. Therefore, h is a path in A^{\times}that connects 1 with a.

2 Remark 2

In an infinite dimensional Banach algebra over \mathbb{C}, the set of invertible elements may not be connected. For example, let

$$
B=\{f: \Omega \rightarrow \mathbb{C} \text { holomorphic, can be continuously extended to } \bar{\Omega}\}
$$

where Ω is the annulus $\left\{z \in \mathbb{C}: \frac{1}{2}<|z|<1\right\}$. Then B is a Banach algebra with multiplication being the pointwise multiplication of functions, the unit element being the constant function 1 , and the norm being

$$
\|f\|=\sup _{z \in \Omega}|f(z)| .
$$

The functions $\ldots, z^{-2}, z^{-1}, 1, z, z^{2}, \ldots$ are invertible in B. But no two of them belong to the same connected component of B^{\times}. Indeed, suppose by contradiction that z^{m} and z^{n} belong to the same connected component of B^{\times}for some $m, n \in \mathbb{Z}, m \neq n$.

Since B^{\times}is open in B, it is locally path-connected. Then z^{m} and z^{n} can be connected by a piecewise linear path in B^{\times}. That is a continuous map $h:[0,1] \rightarrow$ $B^{\times}, h(0)(z)=z^{m}, h(1)(z)=z^{n}$, which consists of finitely many line segments in B^{\times}. Write $h(t)(z)$ as $h(t, z)$. Because $h(t,.) \in B^{\times}, h(t,$.$) does not have a zero in$ Ω. Let γ be the circle centered at 0 with radius $\frac{3}{4}$ in the complex plane. For every $f \in B^{\times}, \frac{f^{\prime}(z)}{f(z)}$ is a smooth function on γ.

$$
\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=\int_{0}^{1} \frac{f^{\prime}(z(t)) z^{\prime}(t)}{f(z(t))} d t \xlongequal{w(t)=f(z(t))} \int_{0}^{1} \frac{w^{\prime}(t)}{w(t)} d t=\int_{\Gamma} \frac{1}{w} d w
$$

where Γ is the image of γ under f. It is a closed rectifiable curve. We know that $\frac{1}{2 \pi i} \int_{\Gamma} \frac{1}{w} d w$ is the winding number of Γ with respect to 0 . Thus,

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z \in \mathbb{Z} \quad \forall f \in B^{\times} .
$$

Applying this result for $f(z)=h(t, z)$, we get

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{\partial h}{\partial z}(t, z) d z \in \mathbb{Z} \quad \forall t \in[0,1] .
$$

Because h is a piecewise linear path in $B^{\times}, \frac{\partial h}{\partial z}$ is continuous on $[0,1] \times \gamma$. Then the $\operatorname{map} \phi:[0,1] \rightarrow \mathbb{Z}$,

$$
\phi(t)=\frac{1}{2 \pi i} \int_{\gamma} \frac{\frac{\partial h}{\partial z}(t, z)}{h(t, z)} d z
$$

is continuous. Then it must be a constant function. On the other hand,

$$
\begin{aligned}
\phi(0) & =\frac{1}{2 \pi i} \int_{\gamma} \frac{\frac{\partial h}{\partial z}(0, z)}{h(0, z)} d z=\frac{1}{2 \pi i} \int_{\gamma} \frac{m z^{m-1}}{z^{m}} d z=m \\
\phi(1) & =\frac{1}{2 \pi i} \int_{\gamma} \frac{\frac{\partial h}{\partial z}(1, z)}{h(1, z)} d z=\frac{1}{2 \pi i} \int_{\gamma} \frac{n z^{n-1}}{z^{n}} d z=n
\end{aligned}
$$

This implies $\phi(0) \neq \phi(1)$, which is a contradiction.
The above example is an illustration for Lorch's therem [Ric60, Theorem 1.4.14], which states:

Let B be a commutative Banach algebra over \mathbb{C}. Then B^{\times}either is connected or has infinitely many connected components.

The connected component of B^{\times}containing 1 is called the principal component of B^{\times}. Denote it by G. We see that G is a normal subgroup of B^{\times}. Further description of G can be found in [Pal94, Theorem 2.1.12]. For example, G is the subgroup of B^{\times}generated by $\left\{e^{x}: x \in B\right\}$. Here the exponential map exp : B \rightarrow B^{\times}is defined as

$$
e^{x}=1+\frac{1}{1!} x+\frac{1}{2!} x^{2}+\frac{1}{3!} x^{3}+\ldots=\sum_{k=0}^{\infty} \frac{1}{k!} x^{k} .
$$

If B is commutative, we see that $G=\left\{e^{x}: x \in B\right\}=\exp (B)$. Another form of Lorch's theorem is the following [Pal94, Theorem 2.1.12]:

Let B be a commutative Banach algebra over \mathbb{C}. Then the quotient group B^{\times} / G is torsion-free.

References

[Ric60] C. Rickart: General Theory of Banach Algebras, University Series in Higher Mathematics. Toronto-London-New York: D. van Nostrand Co., Inc., Princeton, N.J., 1960.
[Pal94] T. Palmer, Banach algebras and the general theory of *-algebras, Vol. 1, Encyclopedia of Mathematics and its Applications 49. Cambridge: Cambridge University Press, 1994.

