Theory of Ordinary Differential Equations

Arnd Scheel, VinH 509, phone 625-4065, scheel@umn.edu

$$-$$
 Homework 1 $-$

(1) We want to show that there exists a unique solution $u : \mathbb{R} \to \mathbb{R}^n$ of u' = f(u), $u(0) = u_0$ provided f is globally Lipschitz, $|f(u_1) - f(u_2)| \leq L|u_1 - u_2|$ for some L > 0 and all u_1, u_2 . Therefore define Y_η as the set of continuous functions for which the norm in Y_η ,

$$|u|_{Y_{\eta}} := \sup_{t \in \mathbb{R}} |u(t)e^{-\eta|t|}|,$$

is bounded, and define the usual fixed point operator

$$[Tu](t) = u_0 + \int_0^t f(u(s)) \mathrm{d}s$$

- (i) Show that Y_{η} is a Banach space.
- (i) Show that T maps Y_{η} into itself.
- (i) Show that T is a contraction for η large enough.
- (2) Consider the system

$$\begin{aligned} \dot{x} &= y^2 \\ \dot{y} &= -yx^3, \end{aligned}$$

with initial conditions (x_0, y_0) . Show that all solutions converge as $t \to \infty$, and find the limit $\lim_{t\to\infty} x(t)$ in terms of (x_0, y_0) . For this, find an Euler multiplier so that the system becomes Hamiltonian and analyze the level sets of the Hamiltonian.

Homework is due on Friday, September 19, in class