Theory of Ordinary Differential Equations

Arnd Scheel, VinH 509, phone 625-4065, scheel@umn.edu

- Homework 4 -
(1) Consider the Lotka-Volterra model for competing species

$$
\begin{aligned}
u^{\prime} & =u(1-u-b v) \\
v^{\prime} & =v(1-v-a u)
\end{aligned}
$$

for parameter values $0<a \leq b(a \geq b$ can be obtained by interchanging u and $v)$.
(i) Find all equilibria with $u, v \geq 0$ depending on a, b; you should find changes when crossing the curves $a=1, b=1$, or $a b=1$ in the (a, b)-plane.
(ii) Sketch the nonlinear phase portrait for the nonlinear system in neighborhoods of equilibria on the coordinate axes using the information on the linearization at the equilibria.
(iii) For the equilibrium $u=1, v=0$, compute the spectral projections on the unstable and on the stable eigenspace (when the equilibrium is hyperbolic).
(iv) Optional: Also draw phase portraits near the equilibria with $u, v>0$. There's a phase portrait for each $a, b>0$, which changes at the curves listed in (i).
(2) Show that $\mathrm{e}^{A+B}=\mathrm{e}^{A} \mathrm{e}^{B}$ when $A B=B A$. Give an example that this is not true when $A B \neq B A$. Optional: Does $\mathrm{e}^{A+B}=\mathrm{e}^{A} \mathrm{e}^{B}$ imply $A B=B A$?
(3) For a hyperbolic matrix A show that the unstable subspace E^{u} is asymptotically stable as an invariant set.

Homework is due on Friday, November 7, in class

