Theory of Ordinary Differential Equations

Arnd Scheel, VinH 509, phone 625-4065, scheel@umn.edu

$$-$$
 Homework 5 $-$

- (1) Consider $\dot{u} = f(u) + \varepsilon g(t, u)$ with $f, g \in C^1$, f(0) = 0, and A = Df(0) hyperbolic, for ε small.
 - (i) Show that the linearization $\frac{d}{dt} A$ is invertible as an operator from $C^1(\mathbb{R}, \mathbb{R}^n)$ into $C^0(\mathbb{R}, \mathbb{R}^n)$.
 - (ii) Show that there exists a small neighborhood of the origin $\mathcal{U}(0)$ so that for all ε sufficiently small, there exists a unique solution u(t) such that $u(t) \in \mathcal{U}(0)$ for all $t \in \mathbb{R}$.
 - (iii) Show that u(t) is 1-periodic if g(t, u) is 1-periodic in t.

(2) Consider

$$\begin{aligned} x' &= -x + ay^2\\ y' &= -2y + bx^2. \end{aligned}$$

- (i) Draw the phase portrait of the linearization and express trajectories as graphs x = h(y) or y = h(x).
- (ii) Find the Taylor jet of the (smooth) strong stable manifold, x = h(y) for the nonlinear system up to order two.
- (iii) Try to find a "weak stable" manifold tangent to $\{y = 0\}$, by calculating a quadratic Taylor jet of y = h(x) what goes wrong?
- (iv) Set a = 0 and compute the solutions explicitly. Express y as a function of x. Show that there are many invariant manifolds y = h(x) but none is C^2 because of terms of the form $x^2 \log x$.
- (3) Consider the linear equation $\dot{x} = Ax$, $A = \text{diag}(\lambda_i)$, $\lambda_1 > \lambda_2 > \ldots > \lambda_n$.
 - (i) Derive an equation for the projectivized flow, that is, write $x = u \cdot |x|$ and derive an equation for $u \in S^{n-1}$. Find all equilibria of this flow on the sphere.
 - (ii) Show that the Rayleigh quotient $V(u) = -\frac{1}{2} \langle Au, u \rangle$ is a strict Lyapunov function, that is, strictly decreasing for non-equilibrium stolutions. Which equilibria are stable?
 - (iii) Conclude that all trajectories are heteroclinic and describe heteroclinic orbits.
 - (iv) Describe equilibria and heteroclinic orbits for the (non-self-adjoint) $A = \begin{pmatrix} 0 & 1 \\ \mu & 0 \end{pmatrix}$ for all $\mu \in \mathbb{R}$?

- (v) Alternative to the above: Create a phase portrait on S^2 numerically when $\lambda_j = -j$.
- (4) Implement classical Runge-Kutta for the competing species problem studied in class and demonstrate numerically that the method is of order 4.
- (5) Study error propagation numerically in the Lorenz model,

$$x' = \sigma(y - x)$$

$$y' = x(\rho - z) - y$$

$$z' = xy - \beta z,$$

 $\sigma = 10, \beta = 8/3, \rho = 28$. Therefore, start with x = y = z = 0.1 and integrate using Euler and/or Matlab's RK solver. Compare the solutions at various time intervals and for various step sizes: when do solutions differ qualitatively? Now study the difference between the solutions with initial conditions x = y = 0.1 and $x = y = z = 0.1 + \varepsilon, \varepsilon$ small. Demonstrate numerically that the difference grows exponentially for a certain time.

(6) Find (complex) stability regions for

$$u_{n+1} = u_n + hf(u_n + \frac{h}{2}f(u_n)),$$

$$u_{n+1} = u_n + \frac{h}{2}(f(u_n) + f(u_{n+1}))$$

Alternative/Optional: Find the (real) stability boundaries numerically.

Homework is due on Wednesday, November 26, in class. Choose three, or more for extra credit.