Theory of Ordinary Differential Equations

Arnd Scheel, VinH 509, phone 625-4065, scheel@umn.edu

- Homework 5 -
(1) Consider $\dot{u}=f(u)+\varepsilon g(t, u)$ with $f, g \in C^{1}, f(0)=0$, and $A=D f(0)$ hyperbolic, for ε small.
(i) Show that the linearization $\frac{\mathrm{d}}{\mathrm{d} t}-A$ is invertible as an operator from $C^{1}\left(\mathbb{R}, \mathbb{R}^{n}\right)$ into $C^{0}\left(\mathbb{R}, \mathbb{R}^{n}\right)$.
(ii) Show that there exists a small neighborhood of the origin $\mathcal{U}(0)$ so that for all ε sufficiently small, there exists a unique solution $u(t)$ such that $u(t) \in \mathcal{U}(0)$ for all $t \in \mathbb{R}$.
(iii) Show that $u(t)$ is 1-periodic if $g(t, u)$ is 1-periodic in t.
(2) Consider

$$
\begin{aligned}
& x^{\prime}=-x+a y^{2} \\
& y^{\prime}=-2 y+b x^{2} .
\end{aligned}
$$

(i) Draw the phase portrait of the linearization and express trajectories as graphs $x=h(y)$ or $y=h(x)$.
(ii) Find the Taylor jet of the (smooth) strong stable manifold, $x=h(y)$ for the nonlinear system up to order two.
(iii) Try to find a "weak stable" manifold tangent to $\{y=0\}$, by calculating a quadratic Taylor jet of $y=h(x)$ - what goes wrong?
(iv) Set $a=0$ and compute the solutions explicitly. Express y as a function of x. Show that there are many invariant manifolds $y=h(x)$ but none is C^{2} because of terms of the form $x^{2} \log x$.
(3) Consider the linear equation $\dot{x}=A x, A=\operatorname{diag}\left(\lambda_{j}\right), \lambda_{1}>\lambda_{2}>\ldots>\lambda_{n}$.
(i) Derive an equation for the projectivized flow, that is, write $x=u \cdot|x|$ and derive an equation for $u \in S^{n-1}$. Find all equilibria of this flow on the sphere.
(ii) Show that the Rayleigh quotient $V(u)=-\frac{1}{2}\langle A u, u\rangle$ is a strict Lyapunov function, that is, strictly decreasing for non-equilibrium stolutions. Which equilibria are stable?
(iii) Conclude that all trajectories are heteroclinic and describe heteroclinic orbits.
(iv) Describe equilibria and heteroclinic orbits for the (non-self-adjoint) $A=\left(\begin{array}{ll}0 & 1 \\ \mu & 0\end{array}\right)$ for all $\mu \in \mathbb{R}$?
(v) Alternative to the above: Create a phase portrait on S^{2} numerically when $\lambda_{j}=-j$.
(4) Implement classical Runge-Kutta for the competing species problem studied in class and demonstrate numerically that the method is of order 4 .
(5) Study error propagation numerically in the Lorenz model,

$$
\begin{aligned}
x^{\prime} & =\sigma(y-x) \\
y^{\prime} & =x(\rho-z)-y \\
z^{\prime} & =x y-\beta z,
\end{aligned}
$$

$\sigma=10, \beta=8 / 3, \rho=28$. Therefore, start with $x=y=z=0.1$ and integrate using Euler and/or Matlab's RK solver. Compare the solutions at various time intervals and for various step sizes: when do solutions differ qualitatively? Now study the difference between the solutions with initial conditions $x=y=0.1$ and $x=y=z=0.1+\varepsilon, \varepsilon$ small. Demonstrate numerically that the difference grows exponentially for a certain time.
(6) Find (complex) stability regions for

$$
\begin{aligned}
& u_{n+1}=u_{n}+h f\left(u_{n}+\frac{h}{2} f\left(u_{n}\right)\right) \\
& u_{n+1}=u_{n}+\frac{h}{2}\left(f\left(u_{n}\right)+f\left(u_{n+1}\right)\right)
\end{aligned}
$$

Alternative/Optional: Find the (real) stability boundaries numerically.

Homework is due on Wednesday, November 26, in class. Choose three, or more for extra credit.

