Dynamical Systems and Differential Equations II

Arnd Scheel, VinH 509, phone 625-4065, scheel@umn.edu

- Homework 1 -
(1) Consider perturbations of a length- n Jordan block, $A(\mu)=N_{n}+B(\mu)$, where $N_{j, k}=$ $1, j=k-1, N_{j, k}=0$, otherwise, and $B_{j, j-\ell}=b_{\ell}(\mu)$ for all j and all $\ell \geq 0, B_{j, k}=0$ otherwise (this is sometimes called the Arnold versal unfolding). Suppose that all b_{j} are analytic functions, $b_{j}(0)=0$, and $b_{n-1}^{\prime}(0) \neq 0$. Find all eigenvalues to leading order in μ near $\mu=0$.
(2) Consider the Hamiltonian system

$$
\dot{x}=\partial_{y} H(x, y), \quad \dot{y}=-\partial_{x} H(x, y)
$$

with analytic $H, H(x, y)=x^{4}+5 x y+y^{3}+\mathrm{O}\left(x^{6}+y^{6}\right)$. Find all trajectories that converge to the origin as $t \rightarrow+\infty$ or $t \rightarrow-\infty$, in the form $x=\varphi(y)$ and give first-order expansions for φ.
(3) Consider a ring of three cells with anti-diffusive coupling,

$$
\dot{u}_{j}=f\left(u_{j}\right)+d\left(u_{j+1}-2 u_{j}+u_{j-1}\right), \quad j \in \mathbb{Z} / 3 \mathbb{Z}, \quad d<0 .
$$

Suppose $f(0)=0, f^{\prime}(0)=-1, f^{\prime \prime}(0) \neq 0$. Find the parameter value $d_{*} \in\left(f^{\prime}(0), 0\right)$ where the trivial equilibrium $u_{j}=0, j=0,1$, is not hyperbolic. Now restrict to $u_{1}=u_{2}$ and find all solutions bifurcating from the trivial solution for $d \sim d_{*}$.
(4) Show that two-parameter families of matrices $A\left(\mu_{1}, \mu_{2}\right), \mu_{1}, \mu_{2} \in[0,1]$ can be perturbed by an arbitrarily small amount so that the kernel of the matrix is at most one-dimensional for all μ_{j}.

Due February 6.

