Dynamical Systems and Differential Equations II

Arnd Scheel, VinH 509, phone 625-4065, scheel@umn.edu

- Homework 2 -
(1) Determine equilibria and their stability in the unfoldings of the cusp:
(i) Study the unfolding of the cusp $x^{\prime}=\mu_{1}+\mu_{2} x-x^{3}$: find the region in parameter space where there exist two stable equilibria!
(ii) Consider the more general $x^{\prime}=a_{0}(\mu)+a_{1}(\mu) x+a_{2}(\mu) x^{2}+a_{3}(\mu) x^{3}+\mathrm{O}\left(x^{4}\right)$, with $a_{j}(0)=0, j=0,1,2, a_{3}(0)=-1, \mu=\left(\mu_{1}, \mu_{2}\right)$! Show first that after a change of coordinates we can assume $a_{2} \equiv 0$.
(iii) Assuming that $D_{\mu}\left(a_{0}, a_{1}\right)^{T}$ is invertible, show that a local diffeomorphism in parameter space brings the equation into the form $\tilde{x}^{\prime}=\tilde{\mu}_{1}+\tilde{\mu}_{2} x+\tilde{a}_{3}(\tilde{\mu}) x^{3}+$ $\mathrm{O}\left(x^{4}\right)$, with $\tilde{a}_{3}(0)=-1$. Now find the region of bistability using Newton's polygon (after solving for $\tilde{\mu}_{2} \ldots$).
(2) Find the bifurcation diagram (equilibria, stability, heteroclinics) for the following normal forms:
(i) transcritical: $x^{\prime}=\mu x \pm x^{2}$;
(ii) degenerate pitchfork: $x^{\prime}=\mu_{1} x+\mu_{2} x^{3}-x^{5}$ (find the region with 5 equilibria!)
(3) Show that the fold is "generic"! Therefore, consider $f(x, \mu): \mathbb{R}^{n} \times[0,1] \rightarrow \mathbb{R}^{n}$, smooth, and the associated map

$$
F: \mathbb{R}^{n} \times\left(\mathbb{R}^{n} \backslash\{0\}\right) \times[0,1] \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}, \quad F(x, v, \mu)=\left(f(x, \mu), \partial_{x} f(x, \mu) \cdot v\right)
$$

(i) Notice that zeros of F correspond to bifurcation points of f, that is points, where the IFT fails.
(ii) Assume that 0 is not a critical value of $F\left(\partial_{x, v, \mu} F\right.$ is onto). Conclude that all turning points are "regular" fold points, with quadratic tangency, that is, $\left(e_{0}^{*}, \partial_{\mu} f\right) \neq 0$ and $\left(e_{0}^{*}, \partial_{x x} f\left[e_{0}, e_{0}\right]\right) \neq 0$.
(iii) Consider the perturbed map $\mathcal{F}(x, v, \mu, a, B)$, induced by $f(x, \mu)+a+B x$. Show that $D \mathcal{F}$ is onto and therefore $\mathcal{F} \mp\{0\}$.
(iv) Conclude that $f+a+B x$ has only regular fold points for a dense set of a, B.
(4) Consider

$$
\begin{aligned}
x^{\prime} & =y \\
y^{\prime} & =-x+\mu y+(x+y) z \\
z^{\prime} & =-z+x^{2} .
\end{aligned}
$$

Find the center manifold to quadratic order and compute the coefficients $c_{1}, c_{3} \in \mathbb{C}$ in the cubic Hopf normal form $\zeta^{\prime}=-\mathrm{i} \zeta+c_{1} \mu \overline{=}_{3} \zeta|\zeta|^{2}$ for $\zeta \sim x+\mathrm{i} y$. Derive the scaling $|\zeta| \sim \sqrt{10 \mu}$ for the amplitude of the periodic orbit. Optional: Compare your findings with numerical computations.

Due February 27

