Dynamical Systems and Differential Equations II

Arnd Scheel, VinH 509, phone 625-4065, scheel@umn.edu

- (1) Consider the rigid circle rotation $R_{\alpha} : x \mapsto x + \alpha \mod 1$, $\alpha \in \mathbb{R} \setminus \mathbb{Q}$. Let $J_0 = [0, 1 \alpha)$ and $J_1 = [1 \alpha, 1)$.
 - (i) Construct the first return map $\Phi : J_1 \to J_1$, that is, $\Phi(x) = R_{\alpha}^{k(x)}(x)$ with k(x) > 0 minimal so that $\Phi(x) \in J_1$. Show that $k(x) \in \{\ell, \ell+1\}$, where $\ell = \begin{bmatrix} 1 \\ \alpha \end{bmatrix}$, and [z] denotes the integer part of z.
 - (ii) Show that $\Phi(1 \alpha) = \lim_{x \to 1} \Phi(x)$, so that Φ defines a continuous circle map on the "small" circle $[1 - \alpha, 1]/(1 - \alpha \sim 1)$.
 - (iii) Let $\Psi : [1-\alpha, 1) \to (0, 1], x \mapsto y = 1 \frac{x (1-\alpha)}{\alpha}$ be the unique affine, orientation reversing map from the "small" circle to the standard circle. Show that $\Psi \circ \Phi \circ \Psi^{-1}$ is a rigid rotation R_{β} of S^1 and compute β .
 - (iv) One can clearly iterate this procedure. Interpret the resulting return times ℓ as demoniators in the continued fraction expansion of α .
 - (v) Consider an (arbitrary) orbit $x_j = x + j \cdot \alpha \mod 1$. Define a coding sequence $a_j \in \{0, 1\}$ so that $a_j = k$ if $x_j \in J_k$. Show that a_j consists of ℓ or $\ell 1$ 0's followed by precisely one 1. What is ℓ ?
 - (vi) Define a renomalized sequence b_j , as replacing a block of ℓ 0's and a following 1 by a 0, a block of $\ell 1$ 0's following a 1 by 1. Show that the renormalized sequence is of the same type as the first sequence. Explain the relation to the precious considerations of renormalized return maps.
- (2) Show that the rotation number is a continuous function of a circle homeomorphism.
- (3) Let Φ_1 be the time-one map of the flow to $\dot{x} = f(x)$, $f : \mathbb{R} \to \mathbb{R}$ a C^1 -vector field with f(x+1) = f(x) for all $x \in \mathbb{R}$. Show that Φ_1 induces a circle homeomorphism ϕ_1 and compute the rotation number (recall that you can solve the ODE by separation of variables). Conclude that the rotation number depends smoothly on the vector field when $f \neq 0$. Compare with the case of general families of homeomorphisms. *Optional:* Computer generic asymptotics for the rotation number near $\rho \gtrsim 0$.

Due March 25