Dynamical Systems and Differential Equations II

Arnd Scheel, VinH 509, phone 625-4065, scheel@umn.edu

- Homework 3 -
(1) Consider the rigid circle rotation $R_{\alpha}: x \mapsto x+\alpha \bmod 1, \alpha \in \mathbb{R} \backslash \mathbb{Q}$. Let $J_{0}=$ $[0,1-\alpha)$ and $J_{1}=[1-\alpha, 1)$.
(i) Construct the first return map $\Phi: J_{1} \rightarrow J_{1}$, that is, $\Phi(x)=R_{\alpha}^{k(x)}(x)$ with $k(x)>0$ minimal so that $\Phi(x) \in J_{1}$. Show that $k(x) \in\{\ell, \ell+1\}$, where $\ell=\left[\frac{1}{\alpha}\right]$, and $[z]$ denotes the integer part of z.
(ii) Show that $\Phi(1-\alpha)=\lim _{x \rightarrow 1} \Phi(x)$, so that Φ defines a continuous circle map on the "small" circle $[1-\alpha, 1] /(1-\alpha \sim 1)$.
(iii) Let $\Psi:[1-\alpha, 1) \rightarrow(0,1], x \mapsto y=1-\frac{x-(1-\alpha)}{\alpha}$ be the unique affine, orientation reversing map from the "small" circle to the standard circle. Show that $\Psi \circ$ $\Phi \circ \Psi^{-1}$ is a rigid rotation R_{β} of S^{1} and compute β.
(iv) One can clearly iterate this procedure. Interprete the resulting return times ℓ as demoniators in the continued fraction expansion of α.
(v) Consider an (arbitrary) orbit $x_{j}=x+j \cdot \alpha \bmod 1$. Define a coding sequence $a_{j} \in\{0,1\}$ so that $a_{j}=k$ if $x_{j} \in J_{k}$. Show that a_{j} consists of ℓ or $\ell-10$'s followed by precisely one 1 . What is ℓ ?
(vi) Define a renomalized sequence b_{j}, as replacing a block of $\ell 0$'s and a following 1 by a 0 , a block of $\ell-10$'s following a 1 by 1 . Show that the renormalized sequence is of the same type as the first sequence. Explain the relation to the precious considerations of renormalized return maps.
(2) Show that the rotation number is a continuous function of a circle homeomorphism.
(3) Let Φ_{1} be the time-one map of the flow to $\dot{x}=f(x), f: \mathbb{R} \rightarrow \mathbb{R}$ a C^{1}-vector field with $f(x+1)=f(x)$ for all $x \in \mathbb{R}$. Show that Φ_{1} induces a circle homeomorphism ϕ_{1} and compute the rotation number (recall that you can solve the ODE by separation of variables). Conclude that the rotation number depends smoothly on the vector field when $f \neq 0$. Compare with the case of general families of homeomorphisms. Optional: Computer generic asymptotics for the rotation number near $\rho \gtrsim 0$.

