Existence of Fredholm operators between two Banach spaces

Tuan Pham

03/09/2015

1 Remark 1

A Fredholm operator $T: X \rightarrow Y$ is nearly an isomorphism (in the category of linear continuous maps). The existence of a Fredholm operator between X and Y demands these spaces to have certain similarities. For example, if one of them is infinite dimensional, so must be the other. Other similarities include separability and reflexivity.

Let X and Y be Banach spaces and $T: X \rightarrow Y$ be a Fredholm operator. We have the following statements.
(i) X is separable $\Leftrightarrow Y$ is separable.
(ii) X is reflexive $\Leftrightarrow Y$ is reflexive.

Let Ω be a nonempty open subset of \mathbb{R}^{n}. A consequence of (i) is that there is no Fredholm operator between $L^{1}(\Omega)$ and $L^{p}(\Omega), 1<p<\infty$. A consequence of (ii) is that there is no Fredholm operator between $L^{1}(\Omega)$ and $L^{\infty}(\Omega)$.

Proof. Put $X_{0}=\operatorname{ker} T$ and $Y_{1}=T(X)$. Then $\operatorname{dim} X_{0}<\infty$, $\operatorname{codim} Y_{1}<\infty$, and Y_{1} is closed in Y. Since X_{0} is finite dimensional, it has an algebraic topological complement X_{1}. Then $\left.T\right|_{X_{1}}: X_{1} \rightarrow Y_{1}$ is an isomorphism (in the category of linear continuous maps). Since Y_{1} is closed and has finite codimension in Y, it has an algebraic topological complement Y_{0}. Then $\operatorname{dim} Y_{0}<\infty$ and Y_{0} is closed in Y. We have

$$
\begin{aligned}
X & =X_{0} \oplus X_{1} \\
Y & =Y_{0} \oplus Y_{1} .
\end{aligned}
$$

(i)
(\Rightarrow) Suppose X is separable. Then X_{1} is also separable. Then $Y_{1}=T(X)$ is also separable. Since Y_{0} is finite dimensional, it is separable. Let S_{0} be be
countable dense subset of Y_{0}, and S_{1} be be countable dense subset of Y_{1}. Then the set

$$
S=\left\{a+b: a \in S_{0}, b \in S_{1}\right\}
$$

is also countable. Each $y \in Y$ can be written as $y=y_{0}+y_{1}$ with $y_{0} \in Y_{0}$ and $y_{1} \in Y_{1}$. There are a sequence $\left(a_{n}\right)$ in S_{0} converging to y_{0}, and a sequence $\left(b_{n}\right)$ in S_{1} converging to y_{1}. Then $\left(a_{n}+b_{n}\right)$ is a sequence in S converging to $y_{0}+y_{1}=y$. Thus, S is dense in Y. We have showed that Y is separable.
(\Leftarrow) Suppose Y is separable. Then Y_{1} is also separable. Then $X_{1}=\left(\left.T\right|_{X_{1}}\right)^{-1}(X)$ is also separable. Since X_{0} is finite dimensional, it is separable. By the same arguments as in the previous part, $X=X_{0}+X_{1}$ is separable.
(ii)
(\Rightarrow) Suppose X is reflexive. Because X_{1} is a closed subspace of X, it is also reflexive. Because $\left.T\right|_{X_{1}}: X_{1} \rightarrow Y_{1}$ is an isomorphism (in the category of linear continuous maps), Y_{1} is reflexive. Since Y_{0} is finite dimensional, it is reflexive. We now show that $Y=Y_{0} \oplus Y_{1}$ is also reflexive. In the following, we denote by $\langle.,$. the duality between a space and its dual. Put

$$
\begin{aligned}
& Y_{0}^{\perp}=\left\{f \in Y^{*}:\left.f\right|_{Y_{0}}=0\right\}, \\
& Y_{1}^{\perp}=\left\{g \in Y^{*}:\left.g\right|_{Y_{1}}=0\right\}
\end{aligned}
$$

Then the maps $L_{0}: Y_{1}^{\perp} \rightarrow Y_{0}^{*}, L_{0} f=\left.f\right|_{Y_{0}}$ and $L_{1}: Y_{0}^{\perp} \rightarrow Y_{1}^{*}, L_{1} g=\left.g\right|_{Y_{1}}$ are isomorphisms (in the category of linear continuous maps). Let $y^{* *} \in Y^{* *}$. We determine $y \in Y$ such that $\left\langle y^{* *}, y^{*}\right\rangle=\left\langle y^{*}, y\right\rangle$ for every $y^{*} \in Y^{*}$.

$$
\begin{aligned}
& Y_{0}^{*} \xrightarrow{L_{0}^{-1}} Y_{1}^{\perp} \subset Y^{*} \xrightarrow{y^{* *}} \mathbb{R}, \\
& Y_{1}^{*} \xrightarrow{L_{1}^{-1}} Y_{0}^{\perp} \subset Y^{*} \xrightarrow{y^{* *}} \mathbb{R} .
\end{aligned}
$$

Because $y^{* *} L_{0}^{-1} \in Y_{0}^{* *}$ and Y_{0} is reflexive, there exists $y_{0} \in Y_{0}$ such that

$$
\begin{equation*}
\left\langle y^{* *} L_{0}^{-1}, u\right\rangle=\left\langle u, y_{0}\right\rangle \quad \forall u \in Y_{0}^{*} . \tag{1.1}
\end{equation*}
$$

Similarly, there exists $y_{1} \in Y_{1}$ such that

$$
\begin{equation*}
\left\langle y^{* *} L_{1}^{-1}, v\right\rangle=\left\langle v, y_{1}\right\rangle \quad \forall v \in Y_{1}^{*} . \tag{1.2}
\end{equation*}
$$

We show that $y=y_{0}+y_{1}$ satisfies our demand. Let $\pi_{0}: Y \rightarrow Y_{0}$ and $\pi_{1}: Y \rightarrow Y_{1}$ be the projection maps. Because Y_{0} is finite dimensional, π_{0} is continuous. Then $\pi_{1}=\operatorname{id}_{Y}-\pi_{0}$ is also continuous. Let $y^{*} \in Y^{*}$. Then $y^{*} \pi_{0} \in Y_{1}^{\perp}$ and $y^{*} \pi_{1} \in Y_{0}^{\perp}$. Replacing u in (1.1) by $L_{0}\left(y^{*} \pi_{0}\right)$, we get

$$
\left\langle y^{* *} L_{0}^{-1}, L_{0}\left(y^{*} \pi_{0}\right)\right\rangle=\left\langle L_{0}\left(y^{*} \pi_{0}\right), y\right\rangle .
$$

In other words,

$$
\begin{equation*}
\left\langle y^{* *}, y^{*} \pi_{0}\right\rangle=\left\langle y^{*} \pi_{0}, y_{0}\right\rangle . \tag{1.3}
\end{equation*}
$$

Similarly, replacing v in (1.2) by $L_{1}\left(y^{*} \pi_{1}\right)$, we get

$$
\begin{equation*}
\left\langle y^{* *}, y^{*} \pi_{1}\right\rangle=\left\langle y^{*} \pi_{1}, y_{1}\right\rangle . \tag{1.4}
\end{equation*}
$$

Summing (1.3) and (1.4) together, we get

$$
\left\langle y^{* *}, y^{*} \pi_{0}+y^{*} \pi_{1}\right\rangle=\left\langle y^{*} \pi_{0}, y_{0}\right\rangle+\left\langle y^{*} \pi_{1}, y_{1}\right\rangle=\left\langle y^{*}, y_{0}\right\rangle+\left\langle y^{*}, y_{1}\right\rangle=\left\langle y^{*}, y\right\rangle .
$$

We have showed that Y is reflexive.
(\Leftarrow) Suppose Y is reflexive. Because Y_{1} is a closed subspace of Y, it is also reflexive. Because $\left.T\right|_{X_{1}}: X_{1} \rightarrow Y_{1}$ is an isomorphism (in the category of linear continuous maps), X_{1} is reflexive. Since X_{0} is finite dimensional, it is reflexive. By the same arguments as in the previous part, we conclude that $X=X_{0} \oplus X_{1}$ is reflexive.

Comment. A result on the reflexivity of normed spaces which is more general than what we have showed is found in [Meg98, p.105]. Corollary 1.11 .20 states that:

Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are normed spaces. Then $X=X_{1} \oplus$ $X_{2} \oplus \ldots \oplus X_{n}$ is reflexive if and only if each X_{j} is reflexive.

2 Remark 2

We recall the separability and reflexivity of the Banach spaces $c_{0}, l^{1}, l^{p}(1<p<$ $\infty), l^{\infty}, L^{1}(\Omega), L^{p}(\Omega)(1<p<\infty)$ and $L^{\infty}(\Omega)$. Here Ω is a nonempty open subset of \mathbb{R}^{n}.

	Separable	Reflexive	Dual space
l^{p}	YES	YES	$l^{p^{\prime}}$
l^{1}	YES	NO	l^{∞}
c_{0}	YES	NO	l^{1}
l^{∞}	NO	NO	Strictly larger than l^{1}

	Separable	Reflexive	Dual space
$L^{p}(\Omega)$	YES	YES	$L^{p^{\prime}}(\Omega)$
$L^{1}(\Omega)$	YES	NO	$L^{\infty}(\Omega)$
$L^{\infty}(\Omega)$	NO	NO	Strictly larger than $L^{1}(\Omega)$

Remark 1 gives two necessary conditions for the existence of a Fredholm operator from a Banach space X to a Banach space Y. Within each of the above charts, we see that no two spaces from different rows have a Fredholm operator between them, except for the pair l^{1} and c_{0}. It turns out to be also the case by the following argument.

Suppose there is a Fredholm operator $T: l^{1} \rightarrow c_{0}$ (or $T: c_{0} \rightarrow l^{1}$). Then the dual map $T^{*}: c_{0}^{*}=l^{1} \rightarrow\left(l^{1}\right)^{*}=l^{\infty}$ (or $\left.T^{*}: l^{\infty} \rightarrow l^{1}\right)$ is also a Fredholm operator. This is a contradiction because l^{1} is separable while l^{∞} is not.

For $r, s \in(1, \infty), r \neq s$, our concern is whether there are Fredholm operators between l^{r} and l^{s}, between $L^{r}(\Omega)$ and $L^{s}(\Omega)$. As showed below, the answer for both cases is no.

3 Remark 3

We show that there is no Fredholm operator from l^{r} to l^{s}, where $r, s \in(1, \infty), r \neq$ s. A proposition on the "maximal extension" of Fredholm operators and some background on Schauder bases are needed.

Proposition 3.1. Let X, Y be Banach spaces and $T: X \rightarrow Y$ be a Fredholm operator. We have the following statements.
(i) If $\operatorname{ind}(T)<0$ then X is isomorphic to a closed, finite codimensional subspace of Y.
(ii) If $\operatorname{ind}(T)=0$ then X is isomorphic to Y.
(iii) If $\operatorname{ind}(T)>0$ then Y is isomorphic to a closed, finite codimensional subspace of X.

Here the isomorphisms are understood in the category of topological vector spaces, i.e. bijective, linear, continuous, having continuous inverse.

Proof of Proposition 3.1. Put $X_{0}=\operatorname{ker} T$ and $Y_{1}=T(X)$. Then $\operatorname{dim} X_{0}<\infty$, $\operatorname{codim} Y_{1}<\infty$, and Y_{1} is closed in Y. Since X_{0} is finite dimensional, it has an algebraic topological complement X_{1}. Then $\left.T\right|_{X_{1}}: X_{1} \rightarrow Y_{1}$ is an isomorphism. Since Y_{1} is closed and has finite codimension in Y, it has an algebraic topological complement Y_{0}. Then Y_{0} is finite dimensional and closed in Y.

$$
\begin{aligned}
X & =X_{0} \oplus X_{1} \\
Y & =Y_{0} \oplus Y_{1}
\end{aligned}
$$

Put $n=\operatorname{dim} X_{0}$ and $m=\operatorname{dim} Y_{0}$. The index of T is $n-m$. Condider the following cases.

- $n<m$

If $n=0$ then $X_{1}=X$; then X is isomorphic to Y_{1}, which is a closed, finite codimensional subspace of Y.

Suppose $n \geq 1$. Then $X_{1} \neq X$ and $Y_{1} \neq Y$. By Lemma 3.4 below, there exist $u_{1} \in X \backslash X_{1}, v_{1} \in Y \backslash Y_{1}$ and an isomorphism $T_{1}: X_{1} \oplus \mathbb{R} u_{1} \rightarrow Y_{1} \oplus \mathbb{R} v_{1}$. Put $X_{2}=X_{1}+\mathbb{R} u_{1}$ and $Y_{2}=Y_{1}+\mathbb{R} v_{1}$. Then X_{2} is closed in X because X_{1} is closed in X. Similarly, Y_{2} is closed in Y. If $n=1$ then $X_{2}=X$; then X is isomorphic to Y_{2}, which is a closed, finite codimensional subspace of Y.

Suppose $n \geq 2$. Then $X_{2} \neq X$ and $Y_{2} \neq Y$. By Lemma 3.4 below, there exist $u_{2} \in X \backslash X_{2}, v_{2} \in Y \backslash Y_{2}$ and an isomorphism $T_{2}: X_{2} \oplus \mathbb{R} u_{2} \rightarrow Y_{2} \oplus \mathbb{R} v_{2}$. Put $X_{3}=X_{2}+\mathbb{R} u_{2}$ and $Y_{3}=Y_{2}+\mathbb{R} v_{2}$. Then X_{3} is closed in X because X_{2} is closed
in X. Similarly, Y_{3} is closed in Y. If $n=2$ then $X_{3}=X$; then X is isomorphic to Y_{3}, which is a closed, finite codimensional subspace of Y.

Suppose $n \geq 3$. We continue the above procedure. The process must stop after n steps. The conclusion is that X is isomorphic to a closed, finite codimensional subspace of Y.

- $n=m$

We apply the same procedure as for the case $n<m$. The process must stop after n steps. The conclusion is that X is isomorphic to Y.

- $n>m$

We apply the same procedure as for the case $n<m$. The process must stop after n steps. The conclusion is that X is isomorphic to a closed, finite codimensional subspace of Y.

Below are some concepts relating to Schauder bases [Meg98, Chapter 4].
Definition 3.2. Let X be a Banach space and $\left(x_{n}\right)$ be a sequence in X.
(i) $\left(x_{n}\right)$ is called a Schauder basis of X if for every $x \in X$, there exists a unique sequence $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots$ in \mathbb{R} such that $x=\sum_{n=1}^{\infty} \alpha_{n} x_{n}$.
(ii) $\left(x_{n}\right)$ is called a basic sequence if it is a Schauder basis of the closure of its linear span in X.
(iii) Suppose $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are two basic sequences such that the series $\sum_{n=1}^{\infty} \alpha_{n} x_{n}$ converges if and only if the series $\sum_{n=1}^{\infty} \alpha_{n} y_{n}$ converges. Then $\left(x_{n}\right)$ and $\left(y_{n}\right)$ are said to be equivalent.
(iv) Suppose $\left(x_{n}\right)$ is a Schauder basis of X. A sequence of nonzero elements $\left(u_{n}\right)$ in X of the form $u_{j}=\sum_{n=p_{j}+1}^{p_{j+1}} \beta_{n} x_{n}$ with $\beta_{1}, \beta_{2}, \beta_{3}, \ldots \in \mathbb{R}$ and $1 \leq p_{1}<$ $p_{2}<p_{3}<\ldots$ is called a block basis of $\left(x_{n}\right)$.

We observe that if $\left(x_{n}\right)$ and y_{n} are equivalent basic sequences then \tilde{X}, the closure of the linear span of $\left(x_{n}\right)$, and \tilde{Y}, the closure of the linear span of $\left(y_{n}\right)$ are isomorphic. Indeed, consider the map $L: \tilde{X} \rightarrow \tilde{Y}$,

$$
L\left(\sum_{k=1}^{\infty} \alpha_{k} x_{k}\right)=\sum_{k=1}^{\infty} \alpha_{k} y_{k}
$$

It is well-defined and linear. Because $\left(x_{n}\right)$ is a basic sequence, $\operatorname{ker} L=\{0\}$. Because $\left(y_{n}\right)$ is a basic sequence equivalent to $X, L(\tilde{X})=\tilde{Y}$. The graph of L is

$$
\Gamma(L)=\{(x, L x): x \in \tilde{X}\}=\left\{\left(\sum_{k=1}^{\infty} \alpha_{k} x_{k}, \sum_{k=1}^{\infty} \alpha_{k} y_{k}\right): \sum_{k=1}^{\infty} \alpha_{k} x_{k} \text { converges }\right\} .
$$

This is a closed subset of $\tilde{X} \times \tilde{Y}$. Also, \tilde{X} and \tilde{Y} are Banach spaces. By the Closed Graph theorem, L is continuous. Then by the Open Mapping theorem, L is an isomorphism.

Here is an important result about Schauder bases that is needed for our problem. It is called the Bessaga-Petczyňski Selection Principle [Meg98, p.396], [LT77, p.7].

Let $\left(x_{n}\right)$ be a Schauder basis of a Banach space X, and $\left(y_{n}\right)$ be a sequence in X such that $y_{n} \rightharpoonup 0$ and $y_{n} \nrightarrow 0$. Then $\left(y_{n}\right)$ has a subsequence $\left(y_{n_{k}}\right)$ that is equivalent to a block basis of $\left(x_{n}\right)$.

Now we have enough tools to prove the following result.
Proposition 3.3. Let $r, s \in(1, \infty), r \neq s$. Then there is no Fredholm operator from l^{r} to l^{s}.

Proof. Suppose by contradiction that there exists a Fredholm operator from l^{r} to l^{s}. By Proposition 3.1, either l^{r} is isomorphic to a closed subspace of l^{s}, or l^{s} is isomorphic to a closed subspace of l^{r}. By switching the roles of r and s if necessary, we can assume there is an isomorphism from l^{r} to a closed subspace Y of l^{s}. Denote it by $T: l^{r} \rightarrow Y \subset l^{s}$. Because T is an isomorphism, there exists a number $C>0$ such that

$$
C^{-1}\|x\|_{r} \leq\|T x\|_{s} \leq C\|x\|_{r} \quad \forall x \in l^{r}
$$

For each $n \in \mathbb{N}$, let e_{n} be the sequence with value 1 at the n 'th position and value 0 at other positions. Then $\left(e_{n}\right)$ is a Schauder basis of l^{r} and l^{s}.

Put $v_{n}=T e_{n} \in l^{s}$. Then $v_{n} \nrightarrow 0$ because $C^{-1} \leq\left\|v_{n}\right\|_{s} \leq C$. We now show that $v_{n} \rightharpoonup 0$ in l^{s}. Denote by $\langle.,$.$\rangle the duality between a normed space and its$ dual. Let $f \in\left(l^{s}\right)^{*}$.

$$
\begin{equation*}
\left\langle f, v_{n}\right\rangle=\left\langle f, T e_{n}\right\rangle=\left\langle T^{*} f, e_{n}\right\rangle \quad \forall n \in \mathbb{N} \tag{3.1}
\end{equation*}
$$

where $T^{*}:\left(l^{s}\right)^{*} \rightarrow\left(l^{r}\right)^{*}$ is the dual map of T. Let $\left(e_{m}^{*}\right)$ be the sequence of coordinate functionals associate with $\left(e_{n}\right)$, i.e.

$$
\left\langle e_{m}^{*}, e_{n}\right\rangle= \begin{cases}1 & \text { if } m=n \\ 0 & \text { if } m \neq n\end{cases}
$$

Then

$$
\left(l^{r}\right)^{*}=\left\{\sum_{k=1}^{\infty} \alpha_{k} e_{k}^{*}:\left(\alpha_{k}\right) \in l^{r^{\prime}}\right\}
$$

Because $T^{*} f \in\left(l^{r}\right)^{*}$, we can write $T^{*} f=\sum_{k=1}^{\infty} \alpha_{k} e_{k}^{*}$ for some $\left(\alpha_{k}\right) \in l^{r^{\prime}}$. Then (3.1) becomes

$$
\left\langle f, v_{n}\right\rangle=\left\langle\sum_{k=1}^{\infty} \alpha_{k} e_{k}^{*}, e_{n}\right\rangle=\alpha_{n} \quad \forall n \in \mathbb{N} .
$$

This term converges to 0 as $n \rightarrow \infty$ because $\left.\sum_{k=1}^{\infty}\left|\alpha_{k}\right|\right|^{r^{\prime}}<\infty$.

We have showed that $\left(v_{n}\right)$ converges weakly to 0 in l^{s}. By Bessaga-Pełczyňski Selection Principle, $\left(v_{n}\right)$ has a subsequence $\left(v_{n_{k}}\right)$ that is equivalent to a block basis of $\left(e_{n}\right)$ in l^{s}. Denote by

$$
w_{j}=\sum_{n=p_{j}+1}^{p_{j+1}} a_{n} e_{n}
$$

the block basis of $\left(e_{n}\right)$. Because $\left(v_{n_{k}}\right)$ and $\left(w_{k}\right)$ are equivalent basic sequences, the closure of the linear span of $\left(v_{n_{k}}\right)$ in l^{s} is isomorphic to the closure of the linear span of $\left(w_{k}\right)$ in $l^{s} .{ }^{\dagger}$ Then there exists a number $C_{1}>0$ such that

$$
\begin{equation*}
C_{1}^{-1}\left\|\sum_{k=1}^{\infty} \alpha_{k} w_{k}\right\|_{s} \leq\left\|\sum_{k=1}^{\infty} \alpha_{k} v_{n_{k}}\right\|_{s} \leq C_{1}\left\|\sum_{k=1}^{\infty} \alpha_{k} w_{k}\right\|_{s} \tag{3.2}
\end{equation*}
$$

whenever the series $\sum \alpha_{k} v_{n_{k}}$ converges in l^{s}. In particular,

$$
\begin{equation*}
C_{1}^{-1} C^{-1} \leq C_{1}^{-1}\left\|v_{n_{k}}\right\|_{s} \leq\left\|w_{k}\right\|_{s} \leq C_{1}\left\|v_{n_{k}}\right\|_{s} \leq C_{1} C . \tag{3.3}
\end{equation*}
$$

$$
\begin{aligned}
\left\|\sum_{k=1}^{\infty} \alpha_{k} w_{k}\right\|_{s} & =\left\|\sum_{k=1}^{\infty} \alpha_{k} \sum_{n=p_{k}+1}^{p_{k+1}} a_{n} e_{n}\right\|_{s}=\left\|\sum_{n=p_{1}}^{\infty} \sum_{k: p_{k}<n \leq p_{k+1}} \alpha_{k} a_{n} e_{k}\right\|_{s} \\
& =\left(\sum_{n=p_{1}}^{\infty} \sum_{k: p_{k}<n \leq p_{k+1}}\left|\alpha_{k}\right|^{s}\left|a_{n}\right|^{s}\right)^{\frac{1}{s}}=\left(\sum_{k=1}^{\infty} \sum_{n=p_{k}+1}^{p_{k+1}}\left|\alpha_{k}\right|^{s}\left|a_{n}\right|^{s}\right)^{\frac{1}{s}} \\
& =\left(\sum_{k=1}^{\infty}\left|\alpha_{k}\right|^{s}\left\|w_{k}\right\|_{s}^{s}\right)^{\frac{1}{s}}
\end{aligned}
$$

Applying the estimates for $\left\|w_{k}\right\|_{s}$ given by (3.3), we get

$$
C_{1}^{-1} C^{-1}\left(\sum_{k=1}^{\infty}\left|\alpha_{k}\right|^{s}\right)^{\frac{1}{s}} \leq\left\|\sum_{k=1}^{\infty} \alpha_{k} w_{k}\right\|_{s} \leq C_{1} C\left(\sum_{k=1}^{\infty}\left|\alpha_{k}\right|^{s}\right)^{\frac{1}{s}}
$$

Substituting this estimate into (3.2), we get

$$
\begin{equation*}
C_{1}^{-2} C^{-1}\left(\sum_{k=1}^{\infty}\left|\alpha_{k}\right|^{s}\right)^{\frac{1}{s}} \leq\left\|\sum_{k=1}^{\infty} \alpha_{k} v_{n_{k}}\right\|_{s} \leq C_{1}^{2} C\left(\sum_{k=1}^{\infty}\left|\alpha_{k}\right|^{s}\right)^{\frac{1}{s}} \tag{3.4}
\end{equation*}
$$

whenever the series $\sum \alpha_{k} v_{n_{k}}$ converges in l^{s}. By the continuity of T,

$$
\sum_{k=1}^{\infty} \alpha_{k} v_{n_{k}}=\sum_{k=1}^{\infty} \alpha_{k} T e_{n_{k}}=T\left(\sum_{k=1}^{\infty} \alpha_{k} e_{n_{k}}\right)
$$

[^0]whenever the series $\sum \alpha_{k} e_{n_{k}}$ converges in l^{r}. Taking the norm in l^{s}, we get
$$
C^{-1}\left\|\sum_{k=1}^{\infty} \alpha_{k} e_{n_{k}}\right\|_{r} \leq\left\|\sum_{k=1}^{\infty} \alpha_{k} v_{n_{k}}\right\|_{s} \leq C\left\|\sum_{k=1}^{\infty} \alpha_{k} e_{n_{k}}\right\|_{r}
$$
whenever the series $\sum \alpha_{k} e_{n_{k}}$ converges in l^{r}. In other words,
$$
C^{-1}\left(\sum_{k=1}^{\infty}\left|\alpha_{k}\right|^{r}\right)^{\frac{1}{r}} \leq\left\|\sum_{k=1}^{\infty} \alpha_{k} v_{n_{k}}\right\|_{s} \leq C\left(\sum_{k=1}^{\infty}\left|\alpha_{k}\right|^{r}\right)^{\frac{1}{r}}
$$
whenever $\sum_{k=1}^{\infty}\left|\alpha_{k}\right|^{r}<\infty$. Substituting this estimate into (3.4), we get
\[

$$
\begin{align*}
& \left(\sum_{k=1}^{\infty}\left|\alpha_{k}\right|^{s}\right)^{\frac{1}{s}} \leq C^{2} C_{1}^{2}\left(\sum_{k=1}^{\infty}\left|\alpha_{k}\right|^{r}\right)^{\frac{1}{r}} \tag{3.5}\\
& \left(\sum_{k=1}^{\infty}\left|\alpha_{k}\right|^{r}\right)^{\frac{1}{r}} \leq C^{2} C_{1}^{2}\left(\sum_{k=1}^{\infty}\left|\alpha_{k}\right|^{s}\right)^{\frac{1}{s}} \tag{3.6}
\end{align*}
$$
\]

whenever $\sum_{k=1}^{\infty}\left|\alpha_{k}\right|^{r}<\infty$.
Consider the case $r<s$. Take $\alpha_{k}=\frac{1}{k^{\delta}}$ for $\delta>\frac{1}{r}$. Then (3.6) becomes

$$
\begin{equation*}
\left(\sum_{k=1}^{\infty} \frac{1}{k^{r \delta}}\right)^{\frac{1}{r}} \leq C^{2} C_{1}^{2}\left(\sum_{k=1}^{\infty} \frac{1}{k^{s \delta}}\right)^{\frac{1}{s}} \quad \forall \delta>\frac{1}{r} . \tag{3.7}
\end{equation*}
$$

By Fatou's lemma,

$$
\liminf _{\delta \rightarrow\left(\frac{1}{r}\right)^{+}} \operatorname{LHS}(3.7) \geq\left(\sum_{k=1}^{\infty} \frac{1}{k}\right)^{\frac{1}{r}}=\infty .
$$

By the Dominated Convergence theorem,

$$
\lim _{\delta \rightarrow\left(\frac{1}{r}\right)^{+}} \operatorname{RHS}(3.7)=C^{2} C_{1}^{2}\left(\sum_{k=1}^{\infty} \frac{1}{k^{s / r}}\right)^{\frac{1}{s}}<\infty .
$$

This is a contradiction.
Consider the case $r>s$. Take $\alpha_{k}=\frac{1}{k^{\delta}}$ for $\delta>\frac{1}{s}$. Then (3.5) becomes

$$
\begin{equation*}
\left(\sum_{k=1}^{\infty} \frac{1}{k^{s \delta}}\right)^{\frac{1}{s}} \leq C^{2} C_{1}^{2}\left(\sum_{k=1}^{\infty} \frac{1}{k^{r \delta}}\right)^{\frac{1}{r}} \quad \forall \delta>\frac{1}{s} \tag{3.8}
\end{equation*}
$$

Similar to the previous case,

$$
\liminf _{\delta \rightarrow\left(\frac{1}{r}\right)^{+}} \operatorname{LHS}(3.8) \geq\left(\sum_{k=1}^{\infty} \frac{1}{k}\right)^{\frac{1}{s}}=\infty
$$

$$
\lim _{\delta \rightarrow\left(\frac{1}{r}\right)^{+}} \operatorname{RHS}(3.8)=C^{2} C_{1}^{2}\left(\sum_{k=1}^{\infty} \frac{1}{k^{r / s}}\right)^{\frac{1}{r}}<\infty .
$$

This is a contradiction.
Lemma 3.4. Let X and Y be Banach spaces. Let X_{1} (respectively Y_{1}) be a closed proper subspace of X (respectively Y). Suppose there is an isomorphism $T: X_{1} \rightarrow$ Y_{1}. Then there exist $u_{1} \in X \backslash X_{1}, v_{1} \in Y \backslash Y_{1}$ and an isomorphism $\tilde{T}: X_{1} \oplus \mathbb{R} u_{1} \rightarrow$ $Y_{1} \oplus \mathbb{R} v_{1}$ such that $\left.\tilde{T}\right|_{X_{1}}=T$.

Proof. If $\underset{\tilde{T}}{T}=0$ then $X_{1}=Y_{1}=\{0\} ;$ take $u_{1} \in X \backslash\{0\}$ and $v_{1} \in Y \backslash\{0\}$ arbitrarily; the map $\tilde{T}: \mathbb{R} u_{1} \rightarrow \mathbb{R} v_{1}$ is an isomorphism.

Consider the case $T \neq 0$. By replacing T with $T /\|T\|$, we can assume $\|T\|=1$. Because X_{1} is a closed proper subspace of X, by Riesz's lemma [Meg98, p.325] there exists $u_{1} \in X \backslash X_{1}$ such that $\left\|u_{1}\right\|=1$ and $\operatorname{dist}\left(u_{1}, x\right) \geq \frac{1}{2}$ for every $x \in X_{1}$. Then

$$
\left\|x+u_{1}\right\| \geq \frac{1}{2} \quad \forall x \in X_{1}
$$

Take any $v_{1} \in Y \backslash Y_{1},\left\|v_{1}\right\|=1$. For each $x \in X_{1}$,

$$
\left\|x+u_{1}\right\| \geq\|x\|-\left\|u_{1}\right\|=\|x\|-1 \geq\|T x\|-1
$$

Then

$$
\begin{equation*}
4\left\|x+u_{1}\right\| \geq 3\left\|x+u_{1}\right\|+\left\|x+u_{1}\right\| \geq \frac{3}{2}+(\|T x\|-1)=\|T x\|+\frac{1}{2} \geq\left\|T x+\frac{1}{2} v_{1}\right\| . \tag{3.9}
\end{equation*}
$$

Define a map $\tilde{T}: X_{1} \oplus \mathbb{R} u_{1} \rightarrow Y_{1} \oplus \mathbb{R} v_{1}$,

$$
\tilde{T}\left(x+c u_{1}\right)=T x+\frac{c}{2} v_{1} \quad \forall x \in X_{1}, \forall c \in \mathbb{R}
$$

Then \tilde{T} is linear and bijective. We show that $\|\tilde{T} \tilde{x}\| \leq 4\|\tilde{x}\|$ for all $\tilde{x} \in X_{1} \oplus \mathbb{R} u_{1}$. Take $\tilde{x} \in X_{1} \oplus \mathbb{R} u_{1}$. If $\tilde{x} \in X_{1}$ then $\|\tilde{T} \tilde{x}\|=\|T \tilde{x}\| \leq\|\tilde{x}\| \leq 4\|\tilde{x}\|$.

Consider the case $\tilde{x} \notin X_{1}$. Then $\tilde{x}=x+c u_{1}$ for some $x \in X_{1}, c \in \mathbb{R} \backslash\{0\}$. Put $y=c^{-1} x \in X_{1}$. Then $\tilde{x}=c\left(y+u_{1}\right)$.
$\|\tilde{T} \tilde{x}\|=|c|\left\|\tilde{T}\left(y+u_{1}\right)\right\|=|c|\left\|T y+\frac{1}{2} v_{1}\right\| \stackrel{(3.9)}{\leq}|c| 4\left\|y+u_{1}\right\|=4\left\|c\left(y+u_{1}\right)\right\|=4| | \tilde{x}| |$.
We have showed that \tilde{T} is continuous. Put $X_{2}=X_{1} \oplus \mathbb{R} u_{1}$ and $Y_{2}=Y_{1} \oplus \mathbb{R} v_{1}$. Because X_{1} is closed in X, X_{2} is also closed in X. Thus, X_{2} is a Banach space. Similarly, Y_{2} is a Banach space. By the Open Mapping theorem, \tilde{T} has a continuous inverse. Thus, \tilde{T} is an isomorphism.

4 Remark 4

We show that there is no Fredholm operator from $L^{r}(\Omega)$ to $L^{s}(\Omega)$, where $r, s \in$ $(1, \infty), r \neq s$. Another isomorphism invariance of a Banach space beside separability and reflexivity is its "types". Some background about this notion is needed for our problem.

Definition 4.1. Let X be a Banach space and $p \in[1,2]$. Then X is said to be of type p if there exists a number $C>0$ (could depend on p) such that

$$
\frac{1}{2^{n}} \sum_{\text {all signs }}\left\|\sum_{i=1}^{n} \pm x_{i}\right\|^{p} \leq C \sum_{i=1}^{n}\left\|x_{i}\right\|^{p} \quad \forall n \in \mathbb{N}, \forall x_{1}, \ldots, x_{n} \in X
$$

The above definition can be stated as follows. Let $\epsilon_{1}, \epsilon_{2}, \epsilon_{3}, \ldots$ be an independent sequence of identically distributed random variables, each satisfying $P\left(\epsilon_{i}=1\right)=$ $P\left(\epsilon_{i}=-1\right)=\frac{1}{2}$. The space X is said to be of type p if there exists a number $C>0$ (could depend on p) such that

$$
\mathbb{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|^{p} \leq C \sum_{i=1}^{n}\left\|x_{i}\right\|^{p} \quad \forall n \in \mathbb{N}, \forall x_{1}, \ldots, x_{n} \in X .
$$

Proposition 4.2. Let X be a Banach space of type p. We have the following statements.
(i) Every Banach space isomorphic to X is also of type p.
(ii) X is of type r for every $r \in[1, p)$.

The largest type of X, if exists, is called the best type of X. Thanks to the parallelogram identity, every Hilbert space is of type 2. Then by Part (i), every finite dimensional space is of type 2 , which is its best type.

Proof of Proposition 4.2. (i) Let $T: X \rightarrow Y$ be an isomorphism. There exists a number $C_{1}>0$ such that

$$
C_{1}^{-1}\|x\| \leq\|T x\| \leq C_{1}\|x\| \quad \forall x \in X
$$

Let $n \in \mathbb{N}$ and $y_{1}, \ldots, y_{n} \in Y$. Put $x_{i}=T^{-1}\left(y_{i}\right)$. Then

$$
\begin{gathered}
C_{1}^{-1}\left\|x_{i}\right\| \leq\left\|y_{i}\right\| \leq C_{1}\left\|x_{i}\right\| \\
C_{1}^{-1}\left\|\sum_{i=1}^{n} \pm x_{i}\right\| \leq\left\|\sum_{i=1}^{n} \pm y_{i}\right\| \leq C_{1}\left\|\sum_{i=1}^{n} \pm x_{i}\right\| .
\end{gathered}
$$

Then

$$
\frac{1}{2^{n}} \sum_{\text {all signs }}\left\|\sum_{i=1}^{n} \pm y_{i}\right\|^{p} \leq \frac{C_{1}^{p}}{2^{n}} \sum_{\text {all signs }}\left\|\sum_{i=1}^{n} \pm x_{i}\right\|^{p} \leq C_{1}^{p} C \sum_{i=1}^{n}\left\|x_{i}\right\|^{p} \leq C_{1}^{-2 p} C \sum_{i=1}^{n}\left\|y_{i}\right\|^{p} .
$$

Thus, Y is of type p.
(ii) Because X is of type p,

$$
\begin{equation*}
\mathbb{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|^{p} \leq C \sum_{i=1}^{n}\left\|x_{i}\right\|^{p} \quad \forall n \in \mathbb{N}, \forall x_{1}, \ldots, x_{n} \in X . \tag{4.1}
\end{equation*}
$$

By Hölder's inequality, $\left(\mathbb{E}|f|^{r}\right)^{1 / r} \leq\left(\mathbb{E}|f|^{p}\right)^{1 / p}$ for every random variable f. Taking $f=\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|$, we get

$$
\begin{equation*}
\left(\mathbb{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|^{r}\right)^{\frac{1}{r}} \leq\left(\mathbb{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|^{p}\right)^{\frac{1}{p}} . \tag{4.2}
\end{equation*}
$$

For any $s>1$ and nonnegative numbers $a_{1}, a_{2}, \ldots, a_{n}$, we have

$$
a_{1}^{s}+\ldots+a_{n}^{s} \leq\left(a_{1}+\ldots+a_{n}\right)^{s} .
$$

Take $a_{i}=\left\|x_{i}\right\|^{r}$ and $s=\frac{p}{r}$. Then

$$
\begin{equation*}
\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{r}\right)^{\frac{1}{r}} \tag{4.3}
\end{equation*}
$$

Substituting (4.2) and (4.3) into (4.1), we get

$$
\mathbb{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|^{r} \leq C^{\frac{r}{p}} \sum_{i=1}^{n}\left\|x_{i}\right\|^{r} .
$$

Thus, X is of type r.
Proposition 4.3. Let X be a Banach space of best type p, and Y be a closed subspace with finite codimension. Then Y is also of best type p.

Proof. Since X is of type p, Y is also of type p. Suppose by contradiction that Y is of type $q \in(p, 2]$. Then there exists a number $C>0$ such that

$$
\left(\mathbb{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} y_{i}\right\|^{q}\right)^{\frac{1}{q}} \leq C\left(\sum_{i=1}^{n}\left\|y_{i}\right\|^{q}\right)^{\frac{1}{q}} \quad \forall n \in \mathbb{N}, \forall y_{1}, \ldots, y_{n} \in Y
$$

Write $X=Y \oplus Z$ where Z is a finite dimensional subspace of X. The projection maps $\pi_{Y}: X \rightarrow Y$ and $\pi_{Z}: X \rightarrow Z$ are continuous. Thus, there is a number $C_{2}>0$ such that

$$
\left\|\pi_{Y} x\right\| \leq C_{2}\|x\|, \quad\left\|\pi_{Z} x\right\| \leq C_{2}\|x\| \quad \forall x \in X
$$

Because Z is finite dimensional, it is of type 2. By Proposition 4.2, Part (ii), Z is also of type q. Take $x_{1}, \ldots, x_{n} \in X$ and write $x_{i}=y_{i}+z_{i}$ for $y_{i} \in Y, z_{i} \in Z$. Then $\left\|y_{i}\right\|,\left\|z_{i}\right\| \leq C_{2}\left\|x_{i}\right\|$.

$$
\begin{aligned}
\left(\mathbb{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} x_{i}\right\|^{q}\right)^{\frac{1}{q}} & =\left(\mathbb{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} y_{i}+\sum_{i=1}^{n} \varepsilon_{i} z_{i}\right\|^{q}\right)^{\frac{1}{q}} \\
& \leq\left(\mathbb{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} y_{i}\right\|^{q}\right)^{\frac{1}{q}}+\left(\mathbb{E}\left\|\sum_{i=1}^{n} \varepsilon_{i} z_{i}\right\|^{q}\right)^{\frac{1}{q}} \\
& \leq C\left(\sum_{i=1}^{n}\left\|y_{i}\right\|^{q}\right)^{\frac{1}{q}}+C_{1}\left(\sum_{i=1}^{n}\left\|z_{i}\right\|^{q}\right)^{\frac{1}{q}} \\
& \leq C C_{2}\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{q}\right)^{\frac{1}{q}}+C_{1} C_{2}\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{q}\right)^{\frac{1}{q}} \\
& =\left(C C_{2}+C_{1} C_{2}\right)\left(\sum_{i=1}^{n}\left\|x_{i}\right\|^{q}\right)^{\frac{1}{q}}
\end{aligned}
$$

Hence, X is of type q. Because p is the best type of $X, q \leq p$. This is a contradiction.

An important result that is needed for our problem is that the best type of $L^{p}(\Omega)$ is known. Theorem 6.2.14 in [AK06, p.140] states that:

Let μ be a probability measure. Then the best type of $L^{p}(\mu)$ is equal to p if $1 \leq p \leq 2$, and is equal to 2 if $2<p<\infty$.

We now have enough tools to prove the following result.

Proposition 4.4. Let $r, s \in(1, \infty), r \neq s$, and $\Omega \subset \mathbb{R}^{n}$ be a subset of positive finite measure. Then there is no Fredholm operator from $L^{r}(\Omega)$ to $L^{s}(\Omega)$.

Proof. Suppose by contradiction that there is a Fredholm operator from T : $L^{r}(\Omega) \rightarrow L^{s}(\Omega)$. Then there is a closed, finite-codimensional subspace X (repestively Y) of $L^{r}(\Omega)$ (respectively $L^{s}(\Omega)$) such that X and Y are isomorphic. The dual map $T^{*}: L^{s^{\prime}}(\Omega) \rightarrow L^{r^{\prime}}(\Omega)$ is also a Fredholm operator. Thus, there is a closed, finite-codimensional subspace \tilde{X} (repestively \tilde{Y}) of $L^{r^{\prime}}(\Omega)$ (respectively $\left.L^{s^{\prime}}(\Omega)\right)$ such that \tilde{X} and \tilde{Y} are isomorphic.

By Proposition 4.3, the best type of X (respectively Y, \tilde{X}, \tilde{Y}) is equal to the best type of $L^{r}(\Omega)$ (respectively $L^{s}(\Omega), L^{r^{\prime}}(\Omega), L^{s^{\prime}}(\Omega)$). We have the following chart.

	Best type of			
	X	Y	\tilde{X}	\tilde{Y}
$r<2, s<2$	r	s		
$r<2, s \geq 2$	r	2		
$r=2, s<2$	2	s		
$r=2, s>2$			2	s^{\prime}
$r>2, s<2$	2	s		
$r>2, s=2$			r^{\prime}	2
$r>2, s>2$			r^{\prime}	s^{\prime}

We see that either the best type of X is not equal to the best type of Y, or the best type of \tilde{X} is not equal to the best type of \tilde{Y}. This is a contradiction.

References

[AK06] F. Albiac and N. Kalton: Topics in Banach space theory. Graduate Texts in Mathematics, 233. Springer, New York, 2006.
[LT77] J. Lindenstrauss and L. Tzafriri: Classical Banach spaces. I. Sequence spaces. Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. SpringerVerlag, Berlin-New York, 1977.
[Meg98] R. Megginson: An Introduction to Banach space theory. Graduate Texts in Mathematics, 183. Springer-Verlag, New York, 1998.

[^0]: ${ }^{\dagger}$ See explanation on page 6 .

