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Abstract

Suppose there exists a global solution u to the incompressible Navier-
Stokes equations such that u ∈ Ct(Ḣ

1/2). We prove that its Ḣ1/2 norm
goes to 0 at infinity. We next use this fact to control the L2

t (Ḣ
1/2)

norm of u, and finally we prove that such a solution is stable.

Introduction. – We consider the incompressible Navier-Stokes equations in
the whole space, 

∂u
∂t

= ∆u−∇ · (u⊗ u)−∇p,
∇ · u = 0.
u(x, 0) = u0, x ∈ R3, t ≥ 0.

(1)

It is well-known that there are two different theories for the Cauchy problem:
the Leray weak solutions [8], for initial data u0 ∈ L2, which are global but for
which the uniqueness (or the propagation of regularity) is an open problem;
and the Fujita-Kato “strong” solutions [4] for initial data u0 ∈ Ḣ1/2, which
are unique and local in time, i.e. u ∈ C([0, T ∗), Ḣ1/2). The goal of this
paper is to study a solution for which one assumes a priori that T ∗ = ∞.
Note that if one supposes the initial data to be small then the solution is
actually global. We show that a “large” global solution necessarily becomes
small after a certain time, which implies in particular that it is stable. More
precisely, we obtain the following result.

Theorem 1. Let u ∈ C([0,∞), Ḣ1/2) be a solution of (1). Then,
– there cannot be a blowup at t =∞, and more precisely limt→∞‖u(t)‖Ḣ1/2 =
0.
– the solution u belongs to L2((0,∞), Ḣ3/2).

Remark. – An L3 version of the first part of Theorem 1 is implied in [7],
where it is showed that a solution u ∈ Ct(L

3) satisfies limt→∞
√
t‖u(t)‖∞ = 0.

Note that no assumption is made on the rate of increase of the Ḣ1/2 norm
of the solution. The second part of the theorem can be seen as a consequence
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of the first part and the following theorem. That is a result of persistency,
which does not seem to exist in any references although it should be of folklore
for strong solutions. It is the reverse of the result that is well-known [3] as
follows: if a solution u ∈ C([0, T ∗), Ḣ1/2) belongs to L2((0, T ∗), Ḣ1/2) then it
can extend in Ḣ1/2 beyond T ∗.

Theorem 2. Let T ∗ < ∞ and let u ∈ C([0, T ∗], Ḣ1/2) be a solution of (1).
Then

∫ T ∗

0
‖u‖2Ḣ3/2 ds <∞.

We therefore obtain the second part in Theorem 1 in the following way.
There exists T such that u(T ) is small in norm Ḣ1/2; by the theory of so-
lutions of small initial data u ∈ L2((T,∞), Ḣ3/2) and by Theorem 2 (the
case T ∗ is finite), u ∈ L2((0, T ), Ḣ3/2) from which one concludes that u ∈
L2((0,∞), Ḣ3/2).

An important consequence of Theorem 1 is that it helps prove a stability
theorem under the general assumption u ∈ Ct(Ḣ

1/2). Note that if one as-
sumes that the solution is slightly more regular, u ∈ L∞t,loc(H

1) ∩ L2
t,loc(H

2),
then a stability theorem was proved in [10] under the assumption on the inte-
grability at infinity ∇u ∈ L4

t (L
2
x), which can be excluded thanks to Theorem

1.

Theorem 3. Let u ∈ Ct(Ḣ
1/2) be a global solution of (1). Then this solution

is stable. That is, there exists ε(u) such that if ‖u0 − v0‖Ḣ1/2 < ε(u) then v,
the solution corresponding to initial data v0, is global and

‖(u− v)(t)‖2Ḣ1/2 +

∫ t

0

‖∇(u− v)(s)‖2Ḣ1/2 ds

≤ C‖u0 − v0‖Ḣ1/2e
C(

∫ t
0 ‖u‖

2

Ḣ3/2ds+
∫ t
0 ‖u‖

4
Ḣ1ds).

We refer to [6] for the complete and extensive proofs in the setting of
Besov spaces, which includes in particular the case u ∈ Ct(L

3). Note that
the stability of L3 solutions was recently obtained by Tchamitchian [11] by
completely different techniques, with an additional assumption on the small-
ness in large time, which can be excluded by taking into account the results
in Lemarié [7]. We now give an idea of the proofs, which adapts to the case
of Besov spaces modeled on Lp using a combination of techniques introduced
in [2] and [5].

Proof of Theorem 1. – The important point is the following: if u0 ∈
H1/2, the inhomogeneous Sobolev space, then by the weak-strong unique-
ness [12] the solution u remains in L2 and satisfies the energy inequality
∀t ≥ 0, E(u)

def
= ‖u(t)‖2L2 + 2

∫ t

0
‖∇u(s)‖2H1/2 ds ≤ ‖u0‖2L2 . As a result,

u ∈ L∞t (L2) ∩ L2
t (Ḣ

1), and by interpolation u belongs to L4
t (Ḣ

1/2). For
every ε0 > 0, there exists, therefore, a time t0 such that ‖u(t0)‖Ḣ1/2 ≤ ε0,
and starting from this time one can apply the theory of small solutions.
Thus, the solution remains small and tends to zero at infinity in norm Ḣ1/2
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(see for example [9]). To reduce the general case to this case, one uses the
method of high/low frequency decomposition which is introduced in [1] in the
context of Navier-Stokes and reused with success in [5] to obtain the global
solutions of infinite energy in dimension 2. More precisely, one decomposes
u0 = v0 + w0 where w0 ∈ Ḣ1/2 with small norm and v0 ∈ H1/2 with large
norm. One solves the equation ∂w/∂t = ∆w − ∇ · (w ⊗ w) − ∇p, with
∇ · w = 0, w(x, 0) = w0(x), by the theory of small initial data, to obtain a
solution w ∈ Ct(Ḣ

1/2) ∩ L2
t (Ḣ

3/2) with small norm (see for example [3]) and
which tends to zero at infinity. We have in particular

‖w(t)‖2Ḣ1/2 +

∫ t

0

‖w(s)‖2Ḣ3/2 ds ≤ ‖w0‖2Ḣ1/2 . (2)

Then v
def
= u− w satisfies the equation

∂v

∂t
= ∆v−∇·(v⊗v)−∇·(v⊗w)−∇·(w⊗v)−∇p, with ∇·v = 0, v(x, 0) = v0(x)

(3)
and v belongs to the space Ct(Ḣ

1/2) ∩ L2
t,loc(Ḣ

3/2) since w belongs to this
space, as well as u, thanks to Theorem 2. Thus, from the equation of v one
obtains ∂tv ∈ L2

t,loc(Ḣ
−1/2). Recalling that v0 ∈ L2 and v ∈ L∞t,loc(Ḣ

1/2) ⊂
L2
t,loc(Ḣ

1/2), we deduces that v ∈ Ct(L
2). We can thus write an energy

inequality for v: multiply the equation of v by v and integrate in time and
space to get

‖v(t)‖2L2 + 2

∫ t

0

‖v‖2Ḣ1 ds ≤ ‖v0‖2L2 + 2

∣∣∣∣∫ t

0

∫
R3

(v · ∇w) · vdxds
∣∣∣∣ . (4)

One now estimates by the product rule [of derivatives]∣∣∣∫ t

0

∫
R3 (v · ∇w) · vdxds

∣∣∣ =
∣∣∣∫ t

0

∫
R3 (v ⊗ w) · ∇vdxds

∣∣∣ ≤ C
∫ t

0
‖w‖Ḣ1/2 ‖v‖2Ḣ1 ds

≤ C‖w0‖Ḣ1/2

∫ t

0
‖v‖2Ḣ1 ds,

where the last inequality is a consequence of (2). Supposing that C‖w0‖Ḣ1/2 ≤
1
2
we can reduce the above term by the left hand side of (4), which allows us

to conclude that the energy of v, E(v), remains bounded. We then obtain by
the previous argument that there exists T such that ‖v(T )‖Ḣ1/2 ≤ ‖w0‖Ḣ1/2 .
We deduce that ‖u(T )‖Ḣ1/2 ≤ 2‖w0‖Ḣ1/2 and by the theory of small solu-
tions that limt→∞‖u(t)‖Ḣ1/2 = 0. Note that it is in fact not necessary to use
the theory of small solutions: a self-contained argument is simply by notic-
ing that from ‖u(T )‖Ḣ1/2 ≤ 2‖w0‖Ḣ1/2 and from the relation (2) applied for
u|[T,∞) one can deduce that lim supt→∞‖u(t)‖Ḣ1/2 ≤ ‖u(T )‖Ḣ1/2 ≤ 2‖w0‖Ḣ1/2 ,
which completes the proof of the first part of Theorem 1 because ‖w0‖Ḣ1/2

can be chosen arbitrarily small. We already showed the second part from the
first part and Theorem 2. Theorem 1 is thus proved.
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Proof of Theorem 2. – We start by noticing that the norm L2
t (Ḣ

3/2) is
finite for a small period of time after the initial time (by the uniqueness).
We show that the solution cannot blow up until T ∗ inclusively. We write
the energy inequality for the scalar product in Ḣ1/2, denoted by (·|·)Ḣ1/2 . It
comes from

‖u(t)‖2H1/2 +2

∫ t

0

‖u(s)‖2H3/2 ds ≤ ‖u0‖2H1/2 +2

∣∣∣∣∫ t

0

(∇(u⊗ u)|u)H1/2ds

∣∣∣∣ . (5)

By the density of regular functions in Ct(Ḣ
1/2), one can split u into two

terms : a small term w ∈ Ct(Ḣ
1/2) and a regular and large term v. By the

product rule, one can estimate

|(∇(u⊗ u)|u)Ḣ1/2| ≤ |(w · ∇u|u)Ḣ1/2|+ |(v · ∇u|u)Ḣ1/2 |
≤ C‖w‖Ḣ1/2 ‖u‖2Ḣ3/2 + C‖v‖Ḣ3/2∩L∞‖u‖Ḣ3/2‖u‖Ḣ1/2

≤
(
C‖w‖Ḣ1/2 +

1

2

)
‖u‖2Ḣ3/2 + C ‖v‖2Ḣ3/2∩L∞ ‖u‖

2
Ḣ1/2 .

By choosing ‖w‖Ḣ1/2 to be sufficiently small, one can reduce the first term on
the right hand side of the inequality by the left hand side of (5). The result
follows by applying Gronwall’s lemma since v ∈ L2((0, T ∗), Ḣ3/2 ∩ L∞).

Remark 1. – The proof also applies directly to the case T ∗ = ∞, given
the first part of Theorem 1 which assures limt→∞ ‖u(t)‖Ḣ1/2 = 0.

Remark 2. – The previous proof is based on the separation argument
which plays as the core of each of the results mentioned here. One can also
obtain Theorem 2 in the following way, which was pointed out to us by J.-Y.
Chemin: by examining the proof of the local existence of Ḣ1/2-solutions, it is
easy to see that the [maximal] time of existence is uniformly bounded from
the below by the initial data in a compact subset of Ḣ1/2. Then Theorem
2 is a simple consequence of the uniqueness of the Ḣ1/2-solutions since the
set of initial data vt(x) = u(x, t) for t ∈ [0, T ∗] is compact (as the image of a
compact set).

Proof of Theorem 3. – As remarked, the global solution u ∈ Ct(Ḣ
1/2) is

automatically in L2
t (Ḣ

3/2). We then consider the equation satisfied by the
difference w = u−v, that is ∂w

∂t
= ∆w−∇·(w⊗w)−∇·(w⊗u)−∇·(u⊗w)−∇p,

with ∇·w = 0 and w(x, 0) = w0(x)
def
= u0(x)−v0(x), and search for an a priori

estimate for this equation. We write the new energy inequality in Ḣ1/2 to
obtain

‖w(t)‖2H1/2 + 2
∫ t

0
‖w‖2Ḣ3/2 ds

≤ ‖w0‖2Ḣ1/2 + C
∣∣∣∫ t

0

∫
R3 (w · ∇w|w)Ḣ1/2 + (w · ∇u|w)Ḣ1/2 + (u · ∇w|w)Ḣ1/2ds

∣∣∣ .
The first two terms are estimated easily: the first term which is nonlinear
in w can be absorbed into the left hand side because we suppose a priori
that the member on the left hand side is small and

∣∣∣∫ t

0
(w · ∇w|w)Ḣ1/2ds

∣∣∣ ≤
4



∫ t

0
‖w(s)‖Ḣ1/2 ‖w(s)‖2Ḣ3/2 ds. The second term is bounded easily by using the

product rule and the fact that ∇u ∈ L2
t (Ḣ

1/2). The last term is little more
delicate because a priori it is not possible to estimate (the low frequencies
of) u by the norm L2

t (Ḣ
3/2). We call on the norm L4(Ḣ1) by estimating via

the product rule

|(u · ∇w|w)Ḣ1/2| ≤ C‖u‖Ḣ1‖w‖Ḣ1‖w‖Ḣ3/2 ≤ C‖u‖Ḣ1 ‖w‖1/2Ḣ1/2 ‖w‖
3/2

Ḣ3/2

≤ 1

4
‖w‖2Ḣ3/2 + C ‖u‖4Ḣ1 ‖w‖2Ḣ1/2 .

This allows us to treat this term like the second term. Note that the second
term becomes similar to the above term, the only difference being that the
norm ‖u‖4

Ḣ1 is replaced by the norm ‖u‖2
Ḣ3/2 . Note also that an application

of Littlewood-Paley theory and the commutators allows us to get rid of the
presence of the norm ‖u‖4

Ḣ1 in the upper bound (and thus in the final es-
timate), with the cost of a little more techniques. We then complete [the
proof] a usual way by applying Gronwall’s lemma.
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