Jordan normal form

1 Review the concepts of coordinate changes for linear maps, characteristic polynomials, eigenvalues, eigenvectors, diagonalization, Jordan normal form,

Let V be a vector space over C with dim V=n, and A: V > V be a linear map. We start with matrix representation of A. Let $B = (e_1, e_2, ..., e_n)$ be a basis of V. Each Ae; is a linear combination of $e_1, e_2, ..., e_n$. Write $Ae_i = \sum_{i=1}^n \alpha_{ji} e_j$.

The matrix $(\alpha_{ij})_{1 \le i,j \le n}$ is called the <u>matrix representation</u> or <u>representing matrix</u> of A in the basis B. We denote $[A]_B = (\alpha_{ij})_{1 \le i,j \le n}$. Each vector $x \in V$ is a linear combination of eq.,..., en. Write $x = \sum_{i=1}^{n} a_i e_i$. The column vector

$$[x]_{\mathcal{S}} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

is called the coordinate representation of x in the basis B. Thus,

$$[A]_{\mathcal{B}} = ([Ae_1]_{\mathcal{B}} [Ae_2]_{\mathcal{B}} \dots [Ae_n]_{\mathcal{B}})$$
 (1)

and [An] = [A] [n] .

Now we consider the coordinate changes. Let $B'=(e'_1,...,e'_n)$ be another basis of V. The matrix representing the change of basis from B to B' is defined

$$[P]_{\mathcal{B} \to \mathcal{B}'} = ([e'_1]_{\mathcal{B}} [e'_2]_{\mathcal{B}} \dots [e'_n]_{\mathcal{B}}). \qquad (2)$$

Note that [1] B-B' is an invertible matrix. We have

$$[x]_{\mathcal{B}} = [I]_{\mathcal{B} \to \mathcal{B}'}[x]_{\mathcal{B}'}. \tag{3}$$

Since $[x]_{g'} = [P]_{g \to g'}^{-1}[x]_g$, we get the identity $[P]_{g \to g} = [P]_{g \to g'}^{-1}$. We have

 $[Ae_{i}]_{\mathcal{S}} = [P]_{\mathcal{S} \to \mathcal{S}'}[Ae_{i}]_{\mathcal{S}'} = [P]_{\mathcal{S} \to \mathcal{S}'}[A]_{\mathcal{S}'}[e_{i}]_{\mathcal{S}'} = [P]_{\mathcal{S} \to \mathcal{S}'}[A]_{\mathcal{S}'}[P]_{\mathcal{S}' \to \mathcal{S}}[e_{i}]_{\mathcal{S}}.$ Then $([Ae_{i}]_{\mathcal{S}} - [Ae_{n}]_{\mathcal{S}}) = [P]_{\mathcal{S} \to \mathcal{S}'}[A]_{\mathcal{S}'}[P]_{\mathcal{S}' \to \mathcal{S}}([e_{i}]_{\mathcal{S}' \to \mathcal{S}'}[A]_{\mathcal{S}'}[P]_{\mathcal{S}' \to \mathcal{S}}([e_{i}]_{\mathcal{S}' \to \mathcal{S}'}[A]_{\mathcal{S}'}[P]_{\mathcal{S}' \to \mathcal{S}'}[P]_{\mathcal{S}' \to$

Thus, $[A]_{\mathcal{B}} = [l]_{\mathcal{B} \to \mathcal{B}'} [A]_{\mathcal{B}'} [l]_{\mathcal{B} \to \mathcal{B}'}^{-1}$ (4)

We see that the representing matrices of A in different bases are conjugate to one another. The concepts of characteristic polynomials, eigenspaces, diagonalizability which will be discussed do not depend on the choice of basis for V. However, choosing a basis is needed when we want to do calculation.

The characteristic polynomial of A is defined as $p_A(z) = \det(A - z \operatorname{Id}_V)$. Each root of this polynomial is called an eigenvalue of A. If λ is an eigenvalue then the space

 $E_{\lambda} = \{x \in V : (A - \lambda Id_{V})x = 0\}$ (5) is nontrivial and called the eigenspace associate with λ .

In many circumstances, we want to find a basis of V in which the representing matrix of A is simple. If there exists a basis B of V such that [A]_B is diagonal then A is said to be <u>diagonalizable</u>, or <u>semi-simple</u>. Not all linear transformations are diagonalizable. However, for every linear transformation A there exists a basis B such that [A]_B is of <u>Tordan</u> normal form, i.e.

$$[A]_{\mathcal{B}} = \begin{bmatrix} \alpha_1 & 1 & & & \\ & \alpha_1 & 1 & & \\ & & \alpha_2 & & \\ & & & & \alpha_m & 1 \\ & & & & & \alpha_m & 1 \end{bmatrix}$$

where a, a, ..., am are not necessarily distinct. Each block is called a <u>Fordan block</u>. If B diagonalizes A then [A]B is a diagonal matrix, which is also of Jordan normal form where every Jordan block is of Site 1.

To examine the diagonalitability and Jordan normal form of A, we view V as a module over the principal ring C[t] via the ring morphism $C[t] \to End(V)$, $f \mapsto f(A)$. The linear transformation f(A) is defined as

$$f(A) = c_0 \operatorname{Id}_V + \sum_{j=1}^m c_j \underbrace{A^j}_{= A_0 A_0 \dots A}$$

$$(j \text{ times})$$

$$f(z) = c_0 + \sum_{j=1}^m c_j z^j.$$

Because V is a finitely generated module over C_1 it is also finitely generated over C[7]. The Cayley-Hamilton theorem says that $P_A(A) = O$. Thus, $P_A(7)$ is an emponent of EV. Write $P_A(7) = (7 - \lambda_1)^n - (7 - \lambda_m)^m$ where $\lambda_1, ..., \lambda_m$ are pairwise distinct complex numbers. Each polynomial $7 - \lambda_1$ is a prime in C[7]. By the structure theorem of finitely generated modules over a principal ring (Theorem 7.5, Lang "Algebra" p. 149),

$$V = V(\lambda_1) \oplus \cdots \oplus V(\lambda_m)$$
 as $C[z]$ -modules,

where $V(\lambda_j) = \ker(A - \lambda_j Id_V)^G$. This is an invariant submodule of V. The structure theorem further states that for each $\lambda \in \{\lambda_1, ..., \lambda_m\}$,

 $V(\lambda) \simeq C[t]/(t-\lambda)^{\nu_1} \oplus ... \oplus C[t]/(t-\lambda)^{\nu_s}$ as C[t]-modules, where $1 \leq \nu_1 \leq \nu_2 \leq ... \leq \nu_s$ and the sequence $\nu_1,...,\nu_s$ is uniquely determined. Write $V(\lambda) = V(\lambda)_1 \oplus ... \oplus V(\lambda)_s$ where $V(\lambda)_j \simeq C[t]/(t-\lambda)^{\nu_j}$. Then

$$\begin{split} E_{\lambda} &= \{v \in V : (\lambda - \lambda)v = 0\} = \{v \in V(\lambda) : (\lambda - \lambda)v = 0\} \\ &= \{v = v_1 + \dots + v_s : v_j \in V(\lambda)_j, (\lambda - \lambda)v_j = 0\} \\ &= \{inear span \{v_1, v_2, \dots, v_s\}, \end{split}$$

where $v_j \neq 0$ is an element of $V(\lambda)_j$ such that $(\xi - \lambda)v_j = 0$. Thus, $\dim \xi = s$ called the geometric multiplicity of λ . It is taken it In other words, the geometric multiplicity of λ is the dimension of the eigenspace associate with λ . It is also the number of cyclic modules whose exponent is a power of $(z - \lambda)$ in the decomposition of V.

Let $(z-\lambda)'$ be the power of $(z-\lambda)$ in $P_{\Delta}(z)$. Because each $V(\lambda_j)$ is an invariant subspace of V, there is a basis of V in which the representing matrix of A is of block form.

$$\left(\begin{array}{c}
V(\lambda_{0}) \\
V(\lambda_{0})
\end{array}\right)$$

Thus, $f_A(t) = P_{A|_{V(M)}}(t) - P_{A|_{V(M)}}(t)$. Because $(t - \lambda_j)^{r_j}$ is an exponent of $V(\lambda_j)$

 $λ_j$ is the only eigenvalue of $A|_{V(λ_j)}$. Thus, $P_{A|_{V(λ_j)}}(z)$ is a power of $(z-λ_j)$. Thus, $P_{A|_{V(λ_j)}}(z) = (z-λ_j)^{N_j}$. Then $dim V(λ_j) = deg P_{A|_{V(λ_j)}} = r_j$. We have showed that dim V(λ) = r. Let $p_j(z)$ be the characteristic polynomial of $A|_{V(λ_j)}$. Because each $V(λ)_j$ is an invariant subspace of V(λ), there is a basis of V(λ) in which the representing matrix of $A|_{V(λ_j)}$ is of block form.

$$\begin{pmatrix}
\boxed{V(\lambda)_1} & 0 \\
0 & \boxed{V(\lambda)_s}
\end{pmatrix}$$

Thus, $(t-\lambda)' = p_{A|V(x)}(t) = p_{1}(t) \cdots p_{s}(t)$. Hence, each $p_{j}(t)$ is a power of $(t-\lambda)$.

Because $V(\lambda)_{j} \simeq C[t]/(t-\lambda)^{\nu_{j}}$ as C[t]-modules, they are isomorphic as C-modules.

Thus, $\dim V(\lambda)_{j} = \nu_{j}$. Then $\deg p_{j} = \nu_{j}$ and

r = deg Palva, = deg Pa + -- + deg Ps = 21 + -- + vs.

As a consequence, $r \ge S$. The number r is called the <u>algebraic multiplicity</u> of Γ . It is the exponent of $(\tau - \lambda)$ in the characteristic polynomial of Γ . It is also the sum of the dimensions of cyclic modules whose exponents are powers of $(\tau - \lambda)$ in the decomposition of Γ . We see that the algebraic multiplicity is always greater than or equal to the geometric multiplicity. They are equal if and only if $\Gamma = \dots = \Gamma_S = 1$, i.e. $\Gamma(\Lambda) = \Gamma(\Lambda)$. Note that we always have $\Gamma(\Lambda) \subset \Gamma(\Lambda)$. The following statements are equivalent.

(i) A is diagonalizable.

(ii) The algebraic multiplicity is equal to the geometric multiplicity for every eigenvalue.

(iii)
$$v_1 = --= v_s = 1$$
 for every eigenvalue.

(iv) dim
$$F(\lambda_j) = r_j$$
 for all $1 \le j \le m$.

(o)
$$((A-\lambda Id_v)^2v=0 \Rightarrow (A-\lambda Id_v)v=0)$$
 for every eigenvalue λ and vector $v\in V$.
(vi) $V=E(\lambda_1)\oplus ...\oplus E(\lambda_m)$.

Diagonalization algorithm

Let $A: V \to V$ be a linear transformation and $[A]_{\mathcal{B}_0}$ be its representing matrix in basis B_0 . Our goal is to find a basis B such that $[A]_{\mathcal{B}}$ is diagonal.

1) Calculate the characteristic polynomial
$$p_A(z) = \det(A - z \operatorname{Id}_V) = \det([A]_{B_o} - z \operatorname{In})$$
.

3) Find a basis for
$$E(\lambda) = \{v \in V : (A - \lambda Id_v)v = 0\}$$

$$\simeq \{[v]_{\mathcal{B}_o} : ([A]_{\mathcal{B}_o} - \lambda I_n)[v]_{\mathcal{B}_o} = 0\}$$

for each $\lambda = \lambda_1, \lambda_2, ..., \lambda_m$.

. If dim $E(\lambda_j) < r_j$ for some j then A is not diagonalizable. The algorithm stops.

· If dim E(2) = rj for all j then A is diagonalizable.

4) Let B_j be the basis of $E(\lambda_j)$ and $B=(B_1,B_2,...,B_m)$ be the basis of V obtained by concatenating $B_1,B_2,...,B_m$ in that order. (the order of vectors within each B_j does not matter). Write $B=(v_1,v_2,...,v_m)$. This is a basis that diagonalizes A.

$$[A]_{\mathcal{B}} = \begin{bmatrix} \lambda_{1} & \lambda_{1} & \lambda_{2} \\ \lambda_{1} & \lambda_{2} & \lambda_{3} \end{bmatrix} = \begin{bmatrix} \lambda_{1} & \lambda_{2} & \lambda_{3} \\ \lambda_{2} & \lambda_{3} & \lambda_{3} \end{bmatrix} = \begin{bmatrix} \lambda_{1} & \lambda_{2} & \lambda_{3} \\ \lambda_{3} & \lambda_{4} & \lambda_{3} \end{bmatrix}$$

Recall $[l]_{\mathcal{B}_0 \to \mathcal{B}} = ([v_l]_{\mathcal{B}_0}, ..., [v_n]_{\mathcal{B}_0}).$

In case A is not diagonalizable, we want to find a basis of V in which the representing matrix of A is of Jordan normal form. By the analysis following the structure theorem, the algebraic multiplicity of λ is equal to the sum of the size of Jordan blocks whose diagonal entries are λ whereas the geometric multiplicity is equal to the number of Fordan blocks whose diagonal entries are λ .

$$V = \frac{\ker(A - \lambda_1 Id_V)^n}{V(\lambda_1)} \oplus \dots \oplus \frac{\ker(A - \lambda_m Id_V)^m}{V(\lambda_m)}$$

For each $\lambda = \lambda_1, \lambda_2, ..., \lambda_m$ we write

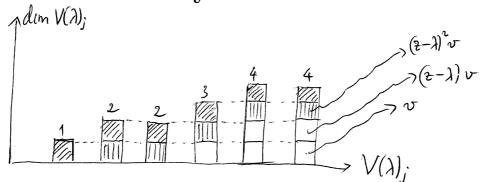
$$V(\lambda) = \underbrace{V(\lambda)_1}_{1} \oplus \cdots \oplus \underbrace{V(\lambda)_s}_{s},$$

$$\simeq \underbrace{C[z]/(z-\lambda)^{r_s}}_{1} \simeq \underbrace{C[z]/(z-\lambda)^{r_s}}_{s}$$

where $1 \le \nu_1 \le \nu_2 \le \dots \le \nu_s$. We will see that each $V(\lambda)_j$ corresponds to a Sodan block of A.

As a C-module, $C[t]/(2-\lambda)^{\nu}$ has a basis $1+(z-\lambda)^{\nu}([t^{2}],(z+\lambda)+$ $+(z-\lambda)^{\nu}C[t^{2}],...,(z-\lambda)^{\nu-1}+(z-\lambda)^{\nu}C[t^{2}]$. Because $V(\lambda)_{j}\simeq C[t^{2}]/(z-\lambda)^{\nu j}$ as C-modules, $V(\lambda)_{j}$ has a basis $v,(z-\lambda)v,...,(z-\lambda)^{\nu-1}v$ where v corresponds to $1+(z-\lambda)^{\nu}C[t^{2}]$ in the isomorphism. We can characterize v by the fact that it is an element in V such that $(z-\lambda)^{\nu}v=0$ but $(z-\lambda)^{\nu-1}v\neq0$. In order to find a basis for $V(\lambda)_{j}$, we need to find "v" for $V(\lambda)_{s},V(\lambda)_{s+1},...,V(\lambda)_{s+1}$ in that order to avoid collecting linearly dependent vectors as we more from $V(\lambda)_{j}$ to $V(\lambda)_{i}$. (?)

First, we determine the numbers $N_1, V_2, ..., V_3$. Suppose the solution spaces of $(A - \lambda Id_V)v = 0$, $(A - \lambda Id_V)^2v = 0$, $(A - \lambda Id_V)^2v = 0$ have dimensions of $(a_1 < ... < a_N = v)$ respectively. Note that $N = v_3$.



The squares \square denote basis vectors for $(A - \lambda Id_V)v = 0$. The square \square and \square denote basis vectors for $(A - \lambda Id_V)^2v = 0$. We have

Lut $\beta_1 = \alpha_1$, $\beta_2 = \alpha_2 - \alpha_1$, ..., $\beta_N = \alpha_N - \alpha_{N-4}$. Then β_j is equal to the number of $\nu_1, \nu_2, ...$, ν_s that are γ_j . Lut $\gamma_i = \beta_i - \beta_2$, ..., $\gamma_{N-1} = \beta_{N-1} - \beta_N$, $\gamma_N = \beta_N$. Then γ_j is the number of $\nu_1, ..., \nu_s$ that are equal to j. Once we get $\gamma_1, ..., \gamma_N$ we can obtain $\nu_1, ..., \nu_s$. For example, if $(\gamma_1, ..., \gamma_N) = (0, 1, 0, 3, 1)$ then $(\nu_1, ..., \nu_s) = (2, 4, 4, 4, 5)$.

Next, we find a basis of $V(\lambda)$ in which $A|_{V(\lambda)}$ is of Forden normal form. We know that this form has a Forden blocks whose sizes are $v_1,...,v_s$. Take $v_{1,1} \in V$ such that $(A - \lambda \mathrm{Id}_V)^{v_s} v_{1,1} = 0$ and $(A - \lambda \mathrm{Id}_V)^{v_s-1} v_{1,1} \neq 0$. Put $v_{1,2} = (A - \lambda \mathrm{Id}_V) v_{1,1}$, $v_{1,s} = (A - \lambda \mathrm{Id}_V)^{v_s} v_{1,1}$. Then $v_{1,1}, v_{1,2}, ..., v_{1,v_s}$ form a basis for $V(\lambda)_s$. We have

In the basis $B_1 = (v_1, v_5, v_1, v_{-1}, v_{1,1}), A|_{V(\Delta)_s}$ is represented by the matrix $([Av_1, v_5] - ... [Av_{1,1}]) = \begin{pmatrix} \lambda & 1 \\ \lambda & 1 \end{pmatrix}$ size v_5 .

We have found the first piece of the desired basis for $V(\lambda)$. There are s-1 other pieces to be found. Take $v_{2,1} \in V$ such that $(A - \lambda Id_V)^{N-1}v_{2,1} = O$, $(A - \lambda Id_V)^{N-1}v_{2,1} \neq O$ and that $v_{2,1}$ is linearly independent of B_1 . Put $v_{2,2} = (A - \lambda Id_V)^{N-1}v_{2,1} + O$ and that $v_{2,1}$ is linearly independent of B_1 . Put $v_{2,2} = (A - \lambda Id_V)^{N-1}v_{2,1} + O$. Then $v_{2,1}, v_{2,2}, \dots, v_{2,N-1}$ form a basis for $V(\lambda)_{s-1}$. In the basis $D_2 = (v_{2,N-1}, v_{2,N-1}, \dots, v_{2,N-1})$, $A|_{V(\lambda)_{s-1}}$ is represented by the matrix

 $\left(\begin{bmatrix} Av_{2,\nu_{s-1}} \end{bmatrix} - - - \begin{bmatrix} Av_{2,1} \end{bmatrix}\right) = \begin{pmatrix} \lambda & 1 \\ \lambda & 1 \\ \lambda & \lambda \end{pmatrix}$ Size v_{s-1} .

This is the second piece of our desired bases for $V(\lambda)$. There are s-2 other pieces to be found. Take $v_{3,1} \in V$ such that $(A-\lambda Id_V)^{V_{3-2}}v_{3,1}=0$, $(A-\lambda Id_V)^{V_{3-2}-1}$ and that $v_{3,1}$ is linearly independent of $B_1 \cup B_2$. We keep doing this procedure until all spieces of the desired basis for $V(\lambda)$ is found. We concatenate these pieces to get $B=(B_1,B_2,...,B_s)$. In this basis, $A|_{V(\lambda)}$ is represented by the matrix

$$\left[A\big|_{V(\lambda)}\right]_{\mathcal{B}} = \begin{bmatrix} \lambda_{1} \\ \lambda_{2} \end{bmatrix}_{\mathcal{B}_{s} \to \mathcal{B}} \begin{bmatrix} A\big|_{V(\lambda)}\right]_{\mathcal{B}_{s}} \begin{bmatrix} \lambda_{1} \\ \lambda_{2} \end{bmatrix}_{\mathcal{B}_{s} \to \mathcal{B}}$$

Fecall $[P]_{Bo \to B} = ([v_{114}]_{Bo} - [v_{11}]_{Bo} [v_{21}v_{3-1}]_{Bo' \to c}, [v_{4}]_{Bo} - [v_{5,1}]_{Bo'}]$ from B_1 from B_2 from B_3 After getting the desired basis for each $V(\lambda_c)$, we concatenate them to get a basis for V in which A is of Jordan normal form. The matrix representing the transformation is obtained by appending the matrices $(I)_{Bo \to B}$ begether. By the above analysis, we can write an algorithm.

Jordan normal form algorithm

Let $A: V \to V$ be a linear transformation and $[A]_{B_0}$ be its representing matrix in basis B_0 . Our goal is to find a basis B such that $[A]_B$ is of Jordan normal form.

1) Calculate the characteristic polynomial $p_A(\tau) = \det(A - \tau Id_V) = \det([A]_{B_0} - \tau I_n)$ Write $p_A(\tau) = (-1)^n (\tau - \lambda_1)^{q_1} \cdots (\tau - \lambda_m)^{r_m}$ where $\lambda_1, \ldots, \lambda_m$ are pairwise distinct complex numbers and $r_1, \ldots, r_m \gg 1$.

2) For each λ_j ,

• Calculate the spaces $\ker(A - \lambda_j Id_V)$, $\ker(A - \lambda_j Id_V)^2$, ... until we first reach the number N with $\ker(A - \lambda_j Id_V)^N = V$. Denote the dimensions of those spaces as $\omega_i(\omega_i C... < \omega_N = r_j$ respectively.

- · Calculate p = x, p = x x, ..., p = x x_n x_n 1.
- Calculate $V_{N} = \beta_{1} \beta_{2}$, ..., $V_{N-1} = \beta_{N-1} \beta_{N-2}$, $V_{N} = \beta_{N}$.
- · Calculate of & v. & ... & vs such that I'm is trumber of vy, ..., is that are equal to k.
- * Find $v_{1,1} \in \ker(A \lambda_j Id_V)^{\nu_s} \setminus \ker(A \lambda_j Id_V)^{\nu_s-1}$ (alculate $v_{1,2} = (A \lambda_j Id_V)v_{1,2}$, $v_{1,3} = (A \lambda_j Id_V)v_{1,2}$, $v_{1,\nu_s} = (A \lambda_j Id_V)v_{1,\nu_s-1}$.
- Find $v_{2,1} \in \ker(A \lambda_j Id_V)^{s-1} \setminus \ker(A \lambda_j Id_V)^{s-1}$ such that $v_{2,1}$ is linearly independent of $v_{1,1}$, v_{1,i_3} . Calculate $v_{2,2} = (A \lambda_j Id_V) v_{2,1,1-1}$, $v_{2,i_{3-1}} = (A \lambda_j Id_V) v_{2,1,1-1}$
- Find $v_{3,1} \in \text{ler}(A \lambda_{i} Id_{V})^{y_{3-2}} \setminus \text{ler}(A \lambda_{j} Id_{V})^{y_{3-2}-1}$ such that $v_{3,1}$ is linearly independent of $v_{i,1}, \dots, v_{1,i_{3}}, v_{2,1}, \dots, v_{2,i_{3-1}}$. Calculate $v_{3,2} = (A \lambda_{j} Id_{V}) v_{3,1}$, $v_{3,i_{3-2}-1}$.
- · Fred v
- Put $S_j = (v_1, v_1, \dots, v_{1,1}, v_2, v_{2,1}, \dots, v_{2,1}, \dots, v_{s,1}, \dots, v_{s,1}),$ and $J = (v_1, v_1, \dots, v_{1,1}, v_2, v_{2,1}, \dots, v_{2,1}, \dots, v_{s,1}),$

3) Let $B = (B_1, B_2, \dots, B_m)$ and $J = \begin{pmatrix} J_1 & J_2 & O \\ O & J_m \end{pmatrix}$

and
$$[I]_{B_0 \to B} = ([v_{1,v_5}]_{B_0} - [v_{1,1}]_{B_0} [v_{2,v_5}]_{B_0} - [v_{2,1}]_{B_0} - [v_{5,v_5}]_{B_0} - [v_{5,v_5}]_{B_0} - [v_{5,v_5}]_{B_0}$$
.

Then
$$[AJ_B = J = [I]_{B_0 \to B}^{-1} [AJ_{B_0} [I]_{B_0 \to B}.$$

2 Examples of diagonalizing a matrix

Example 1 Consider matrix
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ 2 & 4 & 2 \end{pmatrix}$$

It can be viewed as a linear map from C3 to C3 whose representing matrix in the standard basis Bo is the given matrix.

The characteristic polynomial of A is $P_{A}(z) = \det(A - z I_s) = -(z-1)/(z-2)/(z-3)$. The eigenvalues are $(\lambda_1, \lambda_2, \lambda_3) = (1, 2, 3)$. Now we compute the eigenspaces $E(\lambda_1) = \{x \in \mathbb{R}^3 : (A - I_3)x = 0\}$.

$$A - I_{3} = \begin{pmatrix} 0 & 2 & 0 \\ 0 & 2 & 0 \\ 2 & -4 & 1 \end{pmatrix} \xrightarrow{r_{2} \rightarrow r_{2} - r_{3}} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 2 & 4 & 1 \end{pmatrix} \xrightarrow{r_{4} \rightarrow r_{3} / 2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 2 & 4 & 1 \end{pmatrix} \xrightarrow{r_{4} \rightarrow r_{3}} \begin{pmatrix} \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Thus, $E(\lambda_1) = \{(x_1, x_2, x_3): x_2 = 0, x_3 = -2a, x_1 = a\}$

dim $E(\lambda_1) = 1 = \text{multiplicity of root } \lambda_1 \text{ of } p_{\lambda}(z)$.

$$E(\lambda_1)$$
 has a basis consisting of $v_1 = \begin{pmatrix} 1 \\ 0 \\ -2 \end{pmatrix}$.

$$E(\lambda_2) = \{x \in \mathbb{C}^3: (A-2I_3)x = 0\}$$

$$A - 2I_3 = \begin{pmatrix} -1 & 2 & 0 \\ 0 & 1 & 0 \\ 2 & -4 & 0 \end{pmatrix} \xrightarrow{f_3 \to f_3 + 2f_4} \begin{pmatrix} 1 & -2 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Thus,
$$E(\lambda_2) = \{(x_1, x_1, x_2): x = 0, x_1 = 2x_2 = 0, x_3 = a\}$$

dim $E(\lambda_z) = 1 = \text{multiplicity of root } \lambda_z \text{ of } \rho_A(z)$.

 $E(\lambda_2)$ has a basis consisting of $v_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

 $E(\lambda_3) = \{x \in \mathbb{C}^3: (A - 3I_3)x = 0\}.$

$$A - 3I_3 = \begin{pmatrix} -2 & 2 & 0 \\ 0 & 0 & 0 \\ 2 & -4 & -1 \end{pmatrix} \xrightarrow{\frac{6}{12} - \frac{6}{12} + \frac{6}{12}} \begin{pmatrix} 1 & -1 & 0 \\ 0 & -2 & -1 \\ 0 & 0 & 0 \end{pmatrix}$$

Thus, E(2) = { (4, 22, 23): 23 = -2a, 2= a, 2 = a}.

dim E(3)= 1 = multiplizity of root 23 of PA(2).

 $E(\lambda_3)$ has a basis consisting of $o_3 = \begin{pmatrix} 1 \\ 1 \\ -2 \end{pmatrix}$.

Therefore, A is diagonalizable. In the basis $B = (v_1, v_2, v_3)$, A is of diagonal form. The matrix representing the change of basis is $[P]_{B_0 \to B} = (v_1 \ v_2 \ v_3)$.

Example 2

Consider matrix
$$A = \begin{pmatrix} 2 & 4 & 6 \\ 0 & 2 & 2 \\ 0 & 0 & 4 \end{pmatrix}$$

It can be viewed as a linear map from C' to C' whose representing matrix in the standard basis Bo is the given matrix.

The characteristic polynomial of A is $p_4(z) = \det(A-zI_3) = -(z-2)^2(z-4)$. The eigenvalues are $(\beta_1, \lambda_2) = (2,4)$ where λ_1 is of multiplicity 2. Now we

compute the eigenspaces.

$$E(\lambda_1) = \{z \in C^3: (A - 2I_3)z = 0\}.$$

$$A - 2I_3 = \begin{pmatrix} 0 & 4 & 6 \\ 0 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix} \xrightarrow{r_3 \rightarrow r_3 - r_2} \begin{pmatrix} 0 & 2 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{pmatrix}$$

Thus, $E(\lambda_1) = \{(x_1, x_1, x_3): x_1 = \alpha, x_2 = 0, x_3 = 0\}$. Because $\dim E(\lambda_1) = 1$ wherh is less than the multiplicity of λ_1 , A is not diagonalizable.

3 Examples of making Fordan normal form

Example 1 Consider matrix
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

It can be viewed as a linear map from C^3 to C^3 whose representing matrix in the standard basis B_0 is the given matrix.

The characteristic polynomial of A is $p_A(t) = -(t-1)^2(t-2)$. The eigenvalues are $(\lambda_1, \lambda_2) = (1, 2)$ where λ_1 is of multiplicity 2.

We find a desired basis for $C^3(\lambda_1)$.

$$A - I_3 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{r_3 \rightarrow r_3 - \frac{r_1}{2}} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

 $ker(A-I_3) = kinear span <math>\left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix} \right\}$.

$$\left(A - \overline{I_3} \right)^2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{\begin{array}{c} G_3 \to G_3 - \frac{\Omega}{2} \\ \Omega \to G_2 - \Gamma_1 \\ 0 & 0 & 0 \end{array}} \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}$$

$$\ker((A-I_3)^2) = \lim \sup \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\}.$$

We stop because dim $\ker((A-I_3)^2)=2=$ multiplicity of λ_1 . We get the sequence $(\alpha_1,\alpha_2)=(1,2)$. Then $\mu=\alpha_1=1$, $\mu=\alpha_2=\alpha_3=1$. Then $\mu=\beta_1-\beta_2=0$, $\mu=\beta_2=1$. This implies $\mu=2$. There is one Jordan block of size 2, which is $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. A vector in $\ker((A-I_3)^2) \setminus \ker(A-I_3)$ is $\sigma_{1,1}=\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$. $\sigma_{1,2}=(A-I_3)\sigma_{1,1}=\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 1 \end{pmatrix}\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}=\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$.

The desired basis for C() is thus (viz, vin).

Now we find a desired basis for $C^s(\lambda_z)$.

$$A - 2I_3 = \begin{pmatrix} -1 & 1 & 0 \\ 0 & -1 & 2 \\ 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_1 \to -r_2 - r_2} \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \end{pmatrix}$$

 $kw(A-2I_3) = lnear span \left\{ \begin{pmatrix} 2 \\ 2 \end{pmatrix} \right\}$

We stop because dim kur (EA-2I_s) = 1 = multiplicity of λ_2 . The desired basis of $C^3(\lambda_2)$ consists of $v'_{2,1} = \begin{pmatrix} 2 \\ 2 \\ 1 \end{pmatrix}$.

Therefore, in the basis $B = (v_{1/2}, v_{1/1}, v_{1/1}')$, A is of Fordan normal form. The matrix representing the change of basis is $[I]_{B_0 \to B} = (v_{1/2}, v_{1/1}, v_{1/1}')$.

$$\begin{bmatrix}
1 & 1 \\
0 & 1
\end{bmatrix} = \begin{pmatrix}
1 & 0 & 2 \\
0 & 1 & 2
\end{pmatrix} \begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 2
\end{pmatrix} \begin{pmatrix}
1 & 0 & 2 \\
0 & 1 & 2
\end{pmatrix} \begin{pmatrix}
0 & 1 & 2 \\
0 & 0 & 1
\end{pmatrix}$$

$$\begin{bmatrix}
AJ_{8}, & \begin{bmatrix}
PJ_{8}, \rightarrow B
\end{bmatrix}$$

Example 2

Consider matrix
$$A = \begin{pmatrix} 1 & 0 & 3 & 0 \\ 1 & 3 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 3 & 1 \end{pmatrix}$$

It can be viewed as a linear map from C4 to C4 whose representing matrix in the standard basis Bo is the given matrix.

The characteristic polynomial of A is $p_A(z) = (z-1)^3(z-3)$. The eigenvalues are $(\lambda_1, \lambda_2) = (1, 5)$ where λ_1 is of multiplicity 3.

We find a desired basis for $C^4(\lambda_1)$.

$$A - I_4 = \begin{pmatrix} 0 & 0 & 3 & 0 \\ 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 \end{pmatrix} \xrightarrow{f_4 \to f_4 - f_4} \begin{pmatrix} 1 & 2 & 0 & 3 \\ 0 & 6 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 $ker(A-I_4) = \{(x_1, x_2, x_3, x_4) \in C^4: x_2 = a, x_4 = 5, x_3 = 0, x_4 = -2a - 3b\}$ $= \{(-2a - 3b, a, 0, b) : a, b \in C\}$

= linear span
$$\left\{ \begin{pmatrix} -2\\1\\0\\0 \end{pmatrix}, \begin{pmatrix} -3\\0\\0\\1 \end{pmatrix} \right\}$$
.

$$(A-I_4)^2 = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 2 & 4 & 12 & 6 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{pmatrix} 1 & 2 & 6 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

 $\ker((A-I_a)^2) = \{(-2a-6b-3c, a, b, c) : a, b, c \in C\}$

= linear span
$$\left\{ \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -6 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -3 \\ 0 \\ 0 \end{pmatrix} \right\}$$

We stop because dim ker $((A - I_4)^2) = 3 = \text{multiplicity of } \lambda_1$. We get the Sequence $(\alpha_1, \alpha_2) = (2,3)$. Thus, $\beta_1 = \alpha_1 = 2$, $\beta_2 = \alpha_2 - \alpha_1 = 1$. Then $\gamma_1 = \beta_1 - \beta_2 = 1$, $\delta_2 = \beta_2 = 1$. This implies $(\beta_1, \beta_2) = (1, 2)$. There is one Jordan block of size 1 and one of size 2, which are (1, 1).

A vector in $\ker ((A - I_4)^2) \setminus \ker (A - I_4)$ is $v_{1,1} = \begin{pmatrix} -6 \\ 0 \\ 1 \end{pmatrix}$. $v_{1,2} = (A - I_4)v_{1,1} = \begin{pmatrix} 0 & 0 & 3 & 0 \\ 1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ A & D & 2 & D \end{pmatrix} \begin{pmatrix} -6 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ -6 \\ 0 \\ 3 \end{pmatrix}.$

A vector in her $(A - I_4)$ that is independent of $v_{1,1}$ and $v_{2,2}$ is $v_{2,1} = \begin{pmatrix} -3 \\ 0 \\ 0 \end{pmatrix}$. The desired basis for $C^4(\lambda_1)$ is $B_1 = (v_{1,2}, v_{1,1}, v_{2,1})$.

Now we find a desired basis for $C^{\dagger}(\lambda_z)$.

$$A-3I_{4} = \begin{pmatrix} -2 & 0 & 3 & 0 \\ 1 & 0 & 0 & 3 \\ 0 & 0 & -2 & 0 \\ 0 & 0 & 3 & -2 \end{pmatrix} \xrightarrow{f_{4} \to f_{1}+2f_{2}} \begin{pmatrix} 0 & 0 & 3 & 6 \\ 1 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 $\ker(A-3I_4) = \left\{ (0,a,0,0) : a \in C \right\}$ $= \liminf \sup \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}.$

We stop because dimker $(A-3I_4)=1=$ multiplicity of λ_2 . The desired basis B_2 of $C^4(\lambda_2)$ consists of $O_{1,1}'=\begin{pmatrix}0\\1\\0\\0\end{pmatrix}$.

Therefore, in the basis $B = (B_1, B_2) = (v_{1,2}, v_{1,1}, v_{2,1}, v_{1,1})$, A is of Fordan normal form. The matrix representing the change of basis is $[P]_{S_0 \to B} = (v_{1,2}, v_{1,1}, v_{2,1}, v_{1,1})$.