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The write-up answers the following questions. They can be considered as steps
to explain the idea of using root systems to characterize complex simple Lie alge-
bras.

• Prove a well-known result in linear algebra: a set of mutually commuting
diagonalizable matrices can be diagonalized simultaneously.

• Compute the root systems of sl(2,C), sl(3,C), su(2), su(3).

• Draw those root systems.

• Explain the characterization of complex simple Lie algebras.
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We prove the following lemma.

Let F be a set of mutually commuting diagonalizable matrices in
Mn(C). Then there exists a basis of Cn that diagonalizes every member
of F .

Proof. For two commuting matrices A and B, each eigenspace of A is invariant
under B. Indeed, if (A−λIn)v = 0 then (A−λIn)Bv = B(A−λIn)v = B(0) = 0.
For n = 1, each element of F is a complex number; thus, the statement of the
lemma is true. Suppose the statement of the lemma is true for all n < m for some
m ≥ 2. Let F be a set of mutually commuting diagonalizable matrices in Mm(C).
Take A ∈ F . Let E(λ1), E(λ2),...,E(λk) be the eigenspaces of A.

E(λj) = {v ∈ Cn : (A− λjIn)v = 0} ,
Cn = E(λ1)⊕ E(λ2)⊕ ...⊕ E(λk).

Each B ∈ F can be viewed as a linear operator on E(λj). Since dimE(λj) < m,
by the induction hypothesis, E(λj) has a basis Bj that diagonalizes every member
of F . Then the basis of Cn obtained by concatenating B1, B2,...,Bk diagonalizes
every member of F .
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Lie theory provides another way for us to see why the lemma is true. It comes
from the fact that every finite-dimensional representation of a reductive complex
Lie algebra admits a weight space decomposition. We view Mn(C) as a Lie algebra
g with Lie bracket [A,B] = AB −BA, and diagonalizable matrices as semisimple
elements of g. Because F is a mutually commuting set, so is the vector subspace
of g generated by F . Without loss of generality, we can assume that F is a vector
subspace of g. Then F is also a Lie subalgebra of g because [A,B] = 0 ∈ F for
all A,B ∈ F .

We assume the fact that the sum of two commuting semisimple elements of g is
a semisimple element. In terms of matrices, this assumption says that the sum of
two commuting diagonalizable matrices is also a diagonalizable matrix. Then every
element of F is semisimple. We know that the map ad : g→ End(g), ad(X)Y =
[X, Y ] is a Lie algebra representation of g. Thus, it maps semisimple elements to
semisimple elements. This implies ad(A) is semisimple for every A ∈ F . Then F
is a toral subalgebra of g. Thus, F is contained in a Cartan subalgebra h of g.

Consider the following Lie algebra representation of g, so called the defining
representation

π : g→ End(Cn), π(X)v = Xv ∀X ∈ g, v ∈ Cn.

For each µ ∈ h∗ (the dual space of h), we define a vector subspace of Cn

Cn(µ) = {v ∈ Cn : π(A)v = 〈µ,A〉 v ∀A ∈ h} .

Then (π,Cn) admits a weight space decomposition

Cn = ⊕
µ∈h∗

Cn(µ).

Since Cn is finite dimensional, only finitely many summands are nonzero. Each
element of h, if viewed as a linear operator on Cn, acts by scalar on each subspace
Cn(µ). Therefore, the basis of Cn obtained by concatenating (arbitrarily chosen)
bases of Cn(µ), µ ∈ h∗, diagonalizes every element of F .
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Compute the root system of sl(2,C).

sl(2,C) = {A ∈M2(C) : tr(A) = 0} .
Denote g = sl(2,C). It has a Cartan subalgebra

h =

{(
s
−s

)
: s ∈ C

}
.

Because h is a one-dimensional vector space, its dual h∗ is also one-dimensional.
We can identify h∗ with C by defining〈

α,

(
s
−s

)〉
= αs ∀α, s ∈ C.
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A root of g is defined as an element α ∈ C\{0} such that

gα = {X ∈ g : [Y,X] = 〈α, Y 〉X ∀Y ∈ h} 6= {0}.

We have(
s
−s

)
︸ ︷︷ ︸

Y

(
a b
c −a

)
︸ ︷︷ ︸

X

−
(
a b
c −a

)(
s
−s

)
=

〈
α,

(
s
−s

)〉(
a b
c −a

)
∀s ∈ C

⇔
(

0 2b
−2c 0

)
= α

(
a b
c −a

)

⇔


a = 0,

(α + 2)c = 0,
(α− 2)b = 0.

The system has nontrivial solution

(
a b
c −a

)
if and only if α = ±2. Therefore,

sl(2,C) has 2 roots. The root space decomposition is

sl(2,C) = g = h⊕ g2 ⊕ g−2,

where

h = C
(

1 0
0 −1

)
, g2 = C

(
0 1
0 0

)
, g−2 = C

(
0 0
1 0

)
.

Compute the root system of sl(3,C).

sl(3,C) = {A ∈M3(C) : tr(A) = 0} .

Denote g = sl(3,C). It has a Cartan subalgebra

h =


 a

b
−a− b

 : a, b ∈ C

 .

Because h is a two-dimensional vector space, its dual h∗ is also two-dimensional.
We can identify h∗ with C2 by defining〈

(x, y),

 a
b
−a− b

〉 = xa+ yb ∀x, y, a, b ∈ C.

A root of g is defined as an element (x, y) ∈ C2\{(0, 0)} such that

g(x,y) = {X ∈ g : [Y,X] = 〈(x, y), Y 〉X ∀Y ∈ h} 6= {0}.
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We have a
b
−a− b


︸ ︷︷ ︸

Y

 c1 c2 c3
c4 c5 c6
c7 c8 −c1 − c5


︸ ︷︷ ︸

X

−

 c1 c2 c3
c4 c5 c6
c7 c8 −c1 − c5

 a
b
−a− b



=

〈
(x, y),

 a
b
−a− b

〉 c1 c2 c3
c4 c5 c6
c7 c8 −c1 − c5

 ∀a, b ∈ C

⇔

 0 c2(a− b) c3(2a+ b)
c4(b− a) 0 c6(a+ 2b)
c7(−2a− b) c8(−a− 2b) 0

 = (ax+by)

 c1 c2 c3
c4 c5 c6
c7 c8 −c1 − c5

 ∀a, b ∈ C

⇔



c1 = c5 = 0
c2 [a(1− x) + b(−1− y)] = 0
c3 [a(2− x) + b(1− y)] = 0
c4 [a(−1− x) + b(1− y)] = 0
c6 [a(1− x) + b(2− y)] = 0
c7 [a(−2− x) + b(−1− y)] = 0
c8 [a(−1− x) + b(−2− y)] = 0

∀a, b ∈ C.

This system has nontrivial solution

 c1 c2 c3
c4 c5 c6
c7 c8 −c1 − c5

 if and only if

(x, y) ∈ {±(1,−1),±(2, 1),±(1, 2)} .

Therefore, sl(3,C) has 6 roots. The root space decomposition is

sl(3,C) = g = h⊕ g(1,−1) ⊕ g(−1,1) ⊕ g(2,1) ⊕ g(−2,−1) ⊕ g(1,2) ⊕ g(−1,−2),

where

h = C

 1 0 0
0 0 0
0 0 −1

⊕ C

 0 0 0
0 1 0
0 0 −1

 ,

g(1,−1) = C

 0 1 0
0 0 0
0 0 0


︸ ︷︷ ︸

X(1,−1)

, g(−1,1) = C

 0 0 0
1 0 0
0 0 0


︸ ︷︷ ︸

X(−1,1)

,

g(2,1) = C

 0 0 1
0 0 0
0 0 0


︸ ︷︷ ︸

X(2,1)

, g(−2,−1) = C

 0 0 0
0 0 0
1 0 0


︸ ︷︷ ︸

X(−2,−1)

,

g(1,2) = C

 0 0 0
0 0 1
0 0 0


︸ ︷︷ ︸

X(1,2)

, g(−1,−2) = C

 0 0 0
0 0 0
0 1 0


︸ ︷︷ ︸

X(−1,−2)

.
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Compute the root system of su(2).

su(2) = {X ∈M2(C) : X +X∗ = 0, tr(X) = 0}

=

{(
ia b
−b̄ −ia

)
: a ∈ R, b ∈ C

}
.

Denote g = su(2). It is a real Lie algebra (of dimension 3), so does not automati-
cally admit a root space decomposition which is available for every complex simple
Lie algebra. In fact, by direct computation we see that there is no α ∈ h∗, where

h =

{(
ia 0
0 −ia

)
: a ∈ R

}
is a maximal abelian subspace of su(2), such that

{X ∈ g : [Y,X] = 〈α, Y 〉X ∀Y ∈ h} 6= {0}.

However, g still has a good decomposition along the idea of root space decomposi-
tion. The idea of root space decomposition is that if g is a complex semisimple Lie
algebra and h is its Cartan subalgebra then g is a direct sum of vector subspaces,
each of which is invariant under every member of the set {ad(Y )}Y ∈h ⊂ End(g),
where ad(Y )X = [Y,X]. Each of these subspaces is one-dimensional over C. In
other words, g has a basis that diagonalizes {ad(Y )}Y ∈h simultaneously.

In our situation, g is a real Lie algebra, so the demand that every invariant
subspace is one-dimensional over R could not be satisfied. But if we allow them
to be of dimension less than or equal to 2, such a decomposition exists. We
now derive that decomposition thanks to our earlier computation for sl(2,C), the
complexification of su(2).

sl(2,C) = C
(

1 0
0 −1

)
︸ ︷︷ ︸

A

⊕C
(

0 1
0 0

)
︸ ︷︷ ︸

B

⊕C
(

0 0
1 0

)
︸ ︷︷ ︸

C

.

We see that

A1 := iA =

(
i 0
0 −i

)
∈ g,

A2 := B − C =

(
0 1
−1 0

)
∈ g,

A3 := i(B + C) =

(
0 i
i 0

)
∈ g.

Because A1, A2, A3 are linearly independent over R and dimg = 3, we have

g = RA1︸︷︷︸
V

⊕RA2 ⊕ RA3︸ ︷︷ ︸
W

.
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For each Y =

(
ia 0
0 −ia

)
∈ h, Y also belongs to the Cartan subalgebra of

sl(2,C). Thus,

ad(Y )A1 = [Y,A1] = 0 ∈ V,
ad(Y )A2 = [Y,A2] = [Y,B]− [Y,C] = 2iaB + 2iaC = 2aA3 ∈ W,
ad(Y )A3 = [Y,A3] = i[Y,B] + i[Y,C] = i(2iaB − 2iaC) = −2aA2 ∈ W.

Therefore, V and W are invariant under every member of the set {ad(Y )}Y ∈h ⊂
End(g). For this reason, the decomposition g = su(2) = V ⊕W is analogous to
root space decomposition.

Compute the root system of su(3).

su(3) = {X ∈M3(C) : X +X∗ = 0, tr(X) = 0}

=


 ia c1 c2
−c̄1 ib c3
−c̄2 −c̄3 −ia− ib

 : a, b ∈ R, c1, c2, c3 ∈ C

 .

Denote g = su(3). It is a real Lie algebra of dimension 8. One of its maximal
abelian subalgebra is

h =


 ia 0 0

0 ib 0
0 0 −ia− ib

 : a, b ∈ R

 .

Similarly to the situation of su(2), we cannot expect g to be a direct sum of one-
dimensional subspaces, each of which is invariant under every member of the set
{ad(Y )}Y ∈h ⊂ End(g). But if we allow them to be of dimension less than or equal
to 2, such a decomposition exists. We now derive that decomposition thanks to
our earlier computation for sl(3,C), the complexification of su(3).

sl(3,C) = CA⊕ CB︸ ︷︷ ︸
Cartan subalgebra

⊕CX(1,−1)⊕CX(−1,1)⊕CX(2,1)⊕CX(−2,−1)⊕CX(1,2)⊕CX(−1,−2),

where

A =

 1 0 0
0 0 0
0 0 −1

 , B =

 0 0 0
0 1 0
0 0 −1

 .

We see that

A1 := iA =

 i 0 0
0 0 0
0 0 −i

 ∈ g, A2 := iB =

 0 0 0
0 i 0
0 0 −i

 ∈ g,

A3 := X(1,−1) −X(−1,1) =

 0 1 0
−1 0 0
0 0 0

 ∈ g,
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A4 := i
(
X(1,−1) +X(−1,1)

)
=

 0 i 0
i 0 0
0 0 0

 ∈ g,

A5 := X(2,1) −X(−2,−1) =

 0 0 1
0 0 0
−1 0 0

 ∈ g,

A6 := i
(
X(2,1) +X(−2,−1)

)
=

 0 0 i
0 0 0
i 0 0

 ∈ g,

A7 := X(1,2) −X(−1,−2) =

 0 0 0
0 0 1
0 −1 0

 ∈ g,

A8 := i
(
X(1,2) +X(−1,−2)

)
=

 0 0 0
0 0 i
0 i 0

 ∈ g.

Because A1, A2, ..., A8 are linearly independent over R and dimg = 8,

g = RA1︸︷︷︸
V1

⊕RA2︸︷︷︸
V2

⊕RA3 ⊕ RA4︸ ︷︷ ︸
V3

⊕RA5 ⊕ RA6︸ ︷︷ ︸
V4

⊕RA7 ⊕ RA8︸ ︷︷ ︸
V5

.

For each Y =

 ia 0 0
0 ib 0
0 0 −ia− ib

 ∈ h, Y also belongs to the Cartan subalgebra

of sl(3,C). Thus,
ad(Y )A1 = [Y,A1] = 0 ∈ V1,
ad(Y )A2 = [Y,A2] = 0 ∈ V2,

ad(Y )A3 = [Y,A3] =
[
Y,X(1,−1)

]
−
[
Y,X(−1,1)

]
= 〈(1,−1), Y 〉X(1,−1) − 〈(−1, 1), Y 〉X(−1,1)

= (ia− ib)X(1,−1) − (−ia+ ib)X(−1,1)

= (a− b)A4 ∈ V3,

ad(Y )A4 = [Y,A4] = i
[
Y,X(1,−1)

]
+ i
[
Y,X(−1,1)

]
= i 〈(1,−1), Y 〉X(1,−1) + i 〈(−1, 1), Y 〉X(−1,1)

= −(a− b)A3 ∈ V3.

Similarly,
ad(Y )A5 = (2a+ b)A6 ∈ V4,
ad(Y )A6 = −(2a+ b)A5 ∈ V4,
ad(Y )A7 = (a+ 2b)A8 ∈ V5,
ad(Y )A8 = −(a+ 2b)A7 ∈ V5.

Therefore, V1, V2, V3, V4, V5 are invariant under every member of the set {ad(Y )}Y ∈h ⊂
End(g). For this reason, the decomposition g = V1⊕V2⊕V3⊕V4⊕V5 is analogous
to root space decomposition.
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We draw the set of roots, called root system, for sl(2,C) and sl(3,C).
For sl(2,C), let ε ∈ h∗ be the coordinate map on h〈

ε,

(
a 0
0 −a

)〉
= a.

For sl(3,C), let ε1, ε2 ∈ h∗ be the coordinate maps on h〈
ε1,

 a 0 0
0 b 0
0 0 −a− b

〉 = a,

〈
ε2,

 a 0 0
0 b 0
0 0 −a− b

〉 = b.

Figure 1: Root system of sl(2,C).

Figure 2: Root system of sl(3,C).

4

We explain the how root systems can be used to classify complex simple Lie alge-
bras.

Two Lie algebras g1 and g2 are said to be isomorphic if there is a map T :
g1 → g2 that is a linear isomorphism and preserves the Lie bracket.

A simple Lie algebra is a nonabelian Lie algebra that has no ideal other than
{0} and itself. In other words, a Lie algebra g is simple if
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. [g, g] 6≡ 0,

. if h is a vector subspace of g and [h, g] ⊂ h then h = {0} or h = g.

Isomorphic simple Lie algebras have ‘equivalent’ root space decompositions. Con-
versely, a list of a few features of the root system is enough to determine the
Lie algebra up to an isomorphism. These features are encoded in a graph, called
Dynkin diagram. We describe it in detail as follows.

Let Φ be the root system of a complex simple Lie algebra g (relative to a choice
of Cartan algebra h). A subset ∆ = {α1, α2, ..., αr} of Φ is called a set of simple
roots if every γ ∈ Φ can be written uniquely as γ = n1α1+...+nrαr with n1, ..., nr ∈
Z, all of the same sign. For example, according to our earlier computation, a set
of simple root of sl(2,C) is {2}; that of sl(3,C) is {(1,−1), (1, 2)}.

Let {ε1, ε2, ..., εm} be a basis of h∗. We know that each root of g is a complex
linear combination of ε1, ε2, ..., εm. We can define a scalar product between two
roots as

(β, γ) =
r∑
j=1

βj γ̄j,

where β =
∑
βjεj and γ =

∑
γjεj. The length of root β is defined as |β| =√

(β, β).
The Dynkin diagram for Φ (relative to a choice of simple roots ∆) is a graph

having vertices v1, v2, ..., vr. Consider two distinct indices i and j. If αi and αj are
orthogonal, we put no edge between vi and vj. If αi and αj are not orthogonal,
we put one edge between vi and vj if |αi| = |αj|, two edges with an arrow from vi
to vj if |αi| =

√
2|αj|, three edges with an arrow from vi to vj if |αi| =

√
3|αj|.

Two Dynkin diagrams are said to be equivalent if there is a bijective map of
the vertices that preserves the edges and the direction of arrows. It is known that
two simple Lie algebra are equivalent if and only if they have equivalent Dynkin
diagrams. That makes the characterization of simple Lie algebras possible. In
1894, E. Cartan characterized all complex simple Lie algebras. Accordingly, every
complex simple Lie algebra is isomorphic to exactly one algebra in the following
list.

. sl(l + 1,C) (l ≥ 1), where

sl(l + 1,C) = {A ∈Ml+1(C) : tr(A) = 0} .

. so(2l + 1,C) (l ≥ 2), where

so(2l + 1,C) =
{
A ∈M2l+1(C) : A+ At = 0

}
.

. sp(l,C) (l ≥ 3), where

sp(l,C) =

{
A ∈M2l(C) : At

(
0 Il
−Il 0

)
+

(
0 Il
−Il 0

)
A = 0

}
.

9



. so(2l,C) (l ≥ 4), where

so(2l,C) =
{
A ∈M2l(C) : A+ At = 0

}
.

. The exceptional Lie algebras G2, F4, E6, E7, E8 whose dimensions are respectively
14, 52, 78, 133, 248.

Figure 3: The Dynkin diagram of sl(l + 1,C).

Figure 4: The Dynkin diagram of so(2l + 1,C).

Figure 5: The Dynkin diagram of sp(l,C).

Figure 6: The Dynkin diagram of so(2l,C).

Figure 7: The Dynkin diagram of G2.

Figure 8: The Dynkin diagram of F4.

Figure 9: The Dynkin diagram of E6.
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Figure 10: The Dynkin diagram of E7.

Figure 11: The Dynkin diagram of E8.
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